Skip to main content

The Role of Uric Acid in Hypertension and Heart Failure

  • Chapter
  • First Online:
Hypertension and Heart Failure

Abstract

Hyperuricemia (H-SUA) is widely represented in the general population and can contribute to high blood pressure and its complications. H-SUA has also a negative prognostic effect in patients with heart failure with reduced (HFrEF) and preserved ejection fraction (HFrEF). The negative effects of H-SUA involve patients with acute and chronic HF and are not related to decline in GFR and renal disease. The negative impact of H-SUA in hypertension and HF is proportional to the levels of SUA and to xanthine oxidase (XO) activity and persists after adjustment for GFR, diuretic treatment, HF functional class, and many other confounding variables. The reduction of UA levels by XO inhibitors has resulted in promising results that warrant further investigations and a better selection of involved patients. A decrease in serum UA levels has also been recently reported in patients treated with SGLT-2 inhibitors, ARNI and Vericiguat and can contribute to the clinical benefit observed with these drugs in patients with heart failure (HFrEF and HFpEF). H-SUA should be systematically considered in patients at risk of cardiovascular disease as well as in those with HF. A decrease in serum uric acid can significantly contribute to the improvement of cardiovascular outcome observed in recent randomized clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ndrepepa G. Uric acid and cardiovascular disease. Clin Chim Acta. 2018;484:150–63.

    Article  CAS  Google Scholar 

  2. Wu XW, Lee CC, Muzny DM, Caskey CT. Urate oxidase: primary structure and evolutionary implications. Proc Natl Acad Sci. 1989;86:9412–6.

    Article  CAS  Google Scholar 

  3. Unger T, Borghi C, Charchar F, Khan NA, Poulter NR, Prabhakaran D, Ramirez A, Schlaich M, Stergiou GS, Tomaszewski M, Wainford RD, Williams B, Schutte AE. 2020 International Society of Hypertension global hypertension practice guidelines. Hypertension. 2020;75(6):1334–57.

    Article  CAS  Google Scholar 

  4. Culleton BF, Larson MG, Kannel WB, Levy D. Serum uric acid and risk for cardiovascular disease and death: the Framingham heart study. Ann Intern Med. 1999;131:7.

    Article  CAS  Google Scholar 

  5. Borghi C, Agabiti-Rosei E, Johnson RJ, Kielstein JT, Lurbe E, Mancia G, Redon J, Stack AG, Tsioufis KP. Hyperuricaemia and gout in cardiovascular, metabolic and kidney disease. Eur J Intern Med. 2020;80:1–11.

    Article  CAS  Google Scholar 

  6. Doehner W, Anker SD, Butler J, Zannad F, Filippatos G, Ferreira JP, Salsali A, Kaempfer C, Brueckmann C, Pocock SJ, Januzzi JL, Packer M. Uric acid and sodium-glucose cotransporter-2 inhibition with empagliflozin in heart failure with reduced ejection fraction: the EMPEROR-reduced trial. Eur Heart J. 2022;43:3435–46.

    Article  CAS  Google Scholar 

  7. Kim KM, Henderson GN, Frye RF, et al. Simultaneous determination of uric acid metabolites allantoin, 6-aminouracil, and triuret in human urine using liquid chromatography–mass spectrometry. J Chromatogr B. 2009;877:65–70.

    Article  CAS  Google Scholar 

  8. Bobulescu IA, Moe OW. Renal transport of uric acid: evolving concepts and uncertainties. Adv Chronic Kidney Dis. 2012;19:358–71.

    Article  Google Scholar 

  9. Choi HK, Mount DB, Reginato AM. Pathogenesis of gout. Ann Intern Med. 2005;143:499.

    Article  CAS  Google Scholar 

  10. Kotozaki Y, Satoh M, Tanno K, Ohmomo H, Otomo R, Tanaka F, Nasu T, Taguchi S, Kikuchi H, Kobayashi T, Shimizu A, Sakata K, Hitomi J, Sobue K, Sasaki M. Plasma xanthine oxidoreductase activity is associated with a high risk of cardiovascular disease in a general Japanese population. Int J Environ Res Public Health. 2021;18:1894.

    Article  CAS  Google Scholar 

  11. Otaki Y, Watanabe T, Kinoshita D, et al. Association of plasma xanthine oxidoreductase activity with severity and clinical outcome in patients with chronic heart failure. Int J Cardiol. 2017;228:151–7.

    Article  Google Scholar 

  12. Pacher P. Therapeutic effects of xanthine oxidase inhibitors: renaissance half a century after the discovery of allopurinol. Pharmacol Rev. 2006;58:87–114.

    Article  CAS  Google Scholar 

  13. Landmesser U, Spiekermann S, Dikalov S, et al. Vascular oxidative stress and endothelial dysfunction in patients with chronic heart failure: role of xanthine-oxidase and extracellular superoxide dismutase. Circulation. 2002;106:3073–8.

    Article  CAS  Google Scholar 

  14. Biscaglia S, Ceconi C, Malagù M, et al. Uric acid and coronary artery disease: an elusive link deserving further attention. Int J Cardiol. 2016;213:28–32.

    Article  Google Scholar 

  15. Gersch C, Palii SP, Kim KM, et al. Inactivation of nitric oxide by uric acid. Nucleosides Nucleotides Nucleic Acids. 2008;27:967–78.

    Article  CAS  Google Scholar 

  16. Zharikov S, Krotova K, Hu H, et al. Uric acid decreases NO production and increases arginase activity in cultured pulmonary artery endothelial cells. Am J Physiol Cell Physiol. 2008;295:C1183–90.

    Article  CAS  Google Scholar 

  17. Dhanasekar C, Kalaiselvan S, Rasool M. Morin, a bioflavonoid suppresses monosodium urate crystal-induced inflammatory immune response in RAW 264.7 macrophages through the inhibition of inflammatory mediators, intracellular ROS levels and NF-κB activation. PloS One. 2015;10:e0145093.

    Article  Google Scholar 

  18. Dick SA, Epelman S. Chronic heart failure and inflammation: what do we really know? Circ Res. 2016;119:159–76.

    Article  CAS  Google Scholar 

  19. Janoudi A, Shamoun FE, Kalavakunta JK, Abela GS. Cholesterol crystal induced arterial inflammation and destabilization of atherosclerotic plaque. Eur Heart J. 2016;37:1959–67.

    Article  CAS  Google Scholar 

  20. Borghi C, Desideri G. Urate-lowering drugs and prevention of cardiovascular disease: the emerging role of xanthine oxidase inhibition. Hypertension. 2016;67:496–8.

    Article  CAS  Google Scholar 

  21. Mancia G, BombelliM FR, et al. Impact of different definitions of the metabolic syndrome on the prevalence of organ damage, cardiometabolic risk and cardiovascular events. J Hypertens. 2010;28:999–1006.

    Article  CAS  Google Scholar 

  22. Alberti KGMM, Eckel RH, Grundy SM, et al. Harmonizing the metabolic syndrome: a joint interim statement of the international diabetes federation task force on epidemiology and prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation. 2009;120:1640–5.

    Article  CAS  Google Scholar 

  23. Ford ES. Risks for all-cause mortality, cardiovascular disease, and diabetes associated with the metabolic syndrome: a summary of the evidence. Diabetes Care. 2005;28:1769–78.

    Article  Google Scholar 

  24. Han T, Lan L, Qu R, et al. Temporal relationship between hyperuricemia and insulin resistance and its impact on future risk of hypertension. Hypertension. 2017;70:703–11.

    Article  CAS  Google Scholar 

  25. Grayson PC, Kim SY, La Valley M, Choi HK. Hyperuricemia and incident hypertension: a systematic review and meta-analysis: risk of incident hypertension associated with hyperuricemia. Arthritis Care Res. 2011;63:102–10.

    Article  CAS  Google Scholar 

  26. Johnson RJ, Kang D-H, Feig D, et al. Is there a pathogenetic role for uric acid in hypertension and cardiovascular and renal disease? Hypertension. 2003;41:1183–90.

    Article  CAS  Google Scholar 

  27. Menè P, Punzo G. Uric acid: bystander or culprit in hypertension and progressive renal disease? J Hypertens. 2008;26:2085–92.

    Article  Google Scholar 

  28. Bellomo G, Venanzi S, Verdura C, et al. Association of uric acid with change in kidney function in healthy normotensive individuals. Am J Kidney Dis. 2010;56:264–72.

    Article  CAS  Google Scholar 

  29. Hsu C, Iribarren C, McCulloch CE, et al. Risk factors for endstage renal disease: 25-year follow-up. Arch Intern Med. 2009;169:342.

    Article  Google Scholar 

  30. Borghi C, Agnoletti D, Cicero AFG, Lurbe E, Virdis A. Uric acid and hypertension: a review of evidence and future perspectives for the management of cardiovascular risk. Hypertension. 2022;79:1927–36. https://doi.org/10.1161/HYPERTENSIONAHA.122.17956.

    Article  CAS  Google Scholar 

  31. Gill D, Cameron AC, Burgess S, Li X, Doherty DJ, Karhunen V, Azmil H, Abdul-Rahim AH, Taylor-Rowan M, Zuber V, Tsao PS, Klarin D, VA Million Veteran Program, Evangelou E, Elliott P, Damrauer SM, Terence J, Quinn TJ, Abbas Dehghan A, Theodoratou E, Dawson J, Tzoulaki J. Urate, blood pressure, and cardiovascular disease: evidence from mendelian randomization and meta-analysis of clinical trials. Hypertension. 2021;77:383–92.

    Article  CAS  Google Scholar 

  32. Hamaguchi S, Furumoto T, Tsuchihashi-Makaya M, et al. Hyperuricemia predicts adverse outcomes in patients with heart failure. Int J Cardiol. 2011;151:143–7.

    Article  Google Scholar 

  33. Anker SD, Doehner W, Rauchhaus M, et al. Uric acid and survival in chronic heart failure: validation and application in metabolic, functional, and hemodynamic staging. Circulation. 2003;107:1991–7.

    Article  Google Scholar 

  34. Kaufman M, Guglin M. Uric acid in heart failure: a biomarker or therapeutic target? Heart Fail Rev. 2013;18:177–86.

    Article  CAS  Google Scholar 

  35. Chrysohoou C, Pitsavos C, Barbetseas J, et al. Serum uric acid levels correlate with left atrial function and systolic right ventricular function in patients with newly diagnosed heart failure: the Hellenic heart failure study: the Hellenic heart failure study. Congest Heart Fail. 2008;14:229–33.

    Article  Google Scholar 

  36. Muiesan ML, Salvetti M, Virdis A, Masi S, Casiglia E, Tikhonoff BCM, Bombelli M, Cicero AFG, Cirillo M, Cirillo P, Desideri GB, D’Elia L, Ferri C, Galletti F, Gesualdo L, Giannattasio C, Iaccarino G, Mallamaci F, Maloberti A, Mazza A, Nazzaro P, Palatini P, Parati GF, Pontremoli R, Rattazzi M, Rivasi G, Tocci G, Ungar A, Verdecchia P, Viazzi F, Volpe M, Grassi G, Borghi C, from the Working Group on Uric Acid, Cardiovascular Risk of the Italian Society of Hypertension. Serum uric acid, predicts heart failure in a large Italian cohort: search for a cut-off value the URic acid right for heArt health study. J Hypertens. 2021;39:62–9.

    Article  CAS  Google Scholar 

  37. Borghi C, Cosentino ER, Rinaldi ER, Cicero AFG. Uricaemia and ejection fraction in elderly heart failure outpatients. Eur J Clin Invest. 2014;44:573–7.

    Article  CAS  Google Scholar 

  38. Amin A, Vakilian F, Maleki M. Serum uric acid levels correlate with filling pressures in systolic heart failure: filling pressures in systolic heart failure. Congest Heart Fail. 2011;17:79–83.

    Article  CAS  Google Scholar 

  39. Vaduganathan M, Greene SJ, Ambrosy AP, et al. Relation of serum uric acid levels and outcomes among patients hospitalized for worsening heart failure with reduced ejection fraction (from the efficacy of vasopressin antagonism in heart failure outcome study with Tolvaptan trial). Am J Cardiol. 2014;114:1713–21.

    Article  CAS  Google Scholar 

  40. Cicoira M, Zanolla L, Rossi A, et al. Elevated serum uric acid levels are associated with diastolic dysfunction in patients with dilated cardiomyopathy. Am Heart J. 2002;143:1107–11.

    Article  Google Scholar 

  41. Filippatos GS, Ahmed MI, Gladden JD, et al. Hyperuricaemia, chronic kidney disease, and outcomes in heart failure: potential mechanistic insights from epidemiological data. Eur Heart J. 2011;32:712–20.

    Article  CAS  Google Scholar 

  42. Shimizu T, Yoshihisa A, Kanno Y, et al. Relationship of hyperuricemia with mortality in heart failure patients with preserved ejection fraction. Am J Physiol Heart Circ Physiol. 2015;309:H1123–9.

    Article  Google Scholar 

  43. Palazzuoli A, Ruocco G, Pellegrini M, et al. Prognostic significance of hyperuricemia in patients with acute heart failure. Am J Cardiol. 2016;117:1616–21.

    Article  CAS  Google Scholar 

  44. Pascual-Figal DA, Hurtado-Martínez JA, Redondo B, et al. Hyperuricaemia and long-term outcome after hospital discharge in acute heart failure patients. Eur J Heart Fail. 2007;9:518–24.

    Article  CAS  Google Scholar 

  45. Ben Salem C, Slim R, Fathallah N, Hmouda H. Drug induced hyperuricaemia and gout. Rheumatology (Oxford). 2017;56(5):679–88.

    CAS  Google Scholar 

  46. Maloberti A, Bombelli M, Facchetti R, Barbagallo CM, Bernardino B, Rosei EA, Casiglia E, Cicero AFG, Cirillo M, Cirillo P, Desideri G, D’elia L, Dell’Oro R, Ferri C, Galletti F, Giannattasio C, Loreto G, Iaccarino G, Lippa L, Mallamaci F, Masi S, Mazza A, Muiesan ML, Nazzaro P, Parati G, Palatini P, Pauletto P, Pontremoli R, Quarti-Trevano F, Rattazzi M, Rivasi G, Salvetti M, Tikhonoff V, Tocci G, Ungar A, Verdecchia P, Viazzi F, Volpe M, Virdis A, Grassi G, Borghi C, Working Group on Uric Acid, Cardiovascular Risk of the Italian Society of Hypertension (SIIA). Relationships between diuretic-related hyperuricemia and cardiovascular events: data from the URic acid right for heArt health study. J Hypertens. 2021;39(2):333–40.

    Article  CAS  Google Scholar 

  47. Cicero AFG, Fogacci F, Kuwabara M, Borghi C. Therapeutic strategies for the treatment of chronic hyperuricemia: an evidence-based update. Medicina (Kaunas). 2021;57(1):58. https://doi.org/10.3390/medicina57010058.

    Article  Google Scholar 

  48. Kario K, Nishizawa M, Kiuchi M, Kiyosue A, Tomita F, Ohtani H, Abe Y, Kuga H, Miyazaki S, Kasai T, Hongou M, Yasu T, Kuramochi J, Fukumoto Y, Hoshide S. Hisatome I comparative effects of topiroxostat and febuxostat on arterial properties in hypertensive patients with hyperuricemia. J Clin Hypertens (Greenwich). 2021;23(2):334–44.

    Article  CAS  Google Scholar 

  49. Sakuma M, Toyoda S, Arikawa T, Koyabu Y, Kato S, Adachi T, Suwa H, Narita J, Anraku K, Ishimura K, Yamauchi F, Sato A, Inoue T, for Excited UA study Investigators. The effects of xanthine oxidase inhibitor in patients with chronic heart failure complicated with hyperuricemia: a prospective randomized controlled clinical trial of topiroxostat vs allopurinol—study protocol. Clin Exp Nephrol. 2018;22:1379–86.

    Article  CAS  Google Scholar 

  50. Larsen KS, Pottegård A, Lindegaard HM, Hallas J. Effect of allopurinol on cardiovascular outcomes in hyperuricemic patients: a cohort study. Am J Med. 2016;129:299–306.

    Article  CAS  Google Scholar 

  51. Agarwal V, Hans N, Messerli FH. Effect of allopurinol on blood pressure: a systematic review and meta-analysis. J Clin Hypertens. 2013;15:435–42.

    Article  CAS  Google Scholar 

  52. Gunawardhana L, McLean L, Punzi HA, et al. Effect of Febuxostat on ambulatory blood pressure in subjects with hyperuricemia and hypertension: a phase 2 randomized placebo-controlled study. J Am Heart Assoc. 2017;6:e006683.

    Article  Google Scholar 

  53. White WB, Saag KG, Becker MA, Borer JS, Gorelick PB, Whelton A, Hunt B, Castillo M, Gunawardhana L, CARES Investigators. Cardiovascular safety of Febuxostat or Allopurinol in patients with gout. N Engl J Med. 2018;378(13):1200–10.

    Article  CAS  Google Scholar 

  54. Mackenzie IS, Ford I, Nuki G, Hallas J, Hawkey CJ, Webster J, Ralston SH, Walters M, Robertson M, De Caterina R, Findlay E, Perez-Ruiz F, McMurray JJV, MacDonald TM, FAST Study Group. Long-term cardiovascular safety of febuxostat compared with allopurinol in patients with gout (FAST): a multicentre, prospective, randomised, open-label, non-inferiority trial. Lancet. 2020;396(10264):1745–57.

    Article  CAS  Google Scholar 

  55. Kim SC, Schneeweiss S, Choudhry N, et al. Effects of xanthine oxidase inhibitors on cardiovascular disease in patients with gout: a cohort study. Am J Med. 2015;128:653.e7–653.e16.

    Article  CAS  Google Scholar 

  56. Gavin AD. Allopurinol reduces B-type natriuretic peptide concentrations and haemoglobin but does not alter exercise capacity in chronic heart failure. Heart. 2005;91:749–53.

    Article  CAS  Google Scholar 

  57. Cingolani HE, Plastino JA, Escudero EM, et al. The effect of xanthine oxidase inhibition upon ejection fraction in heart failure patients: La Plata study. J Card Fail. 2006;12:491–8.

    Article  CAS  Google Scholar 

  58. Ogino K, Kato M, Furuse Y, et al. Uric acid-lowering treatment with benzbromarone in patients with heart failure: a double-blind placebo-controlled crossover preliminary study. Circ Heart Fail. 2010;3:73–81.

    Article  CAS  Google Scholar 

  59. Engberding N, Spiekermann S, Schaefer A, et al. Allopurinol attenuates left ventricular remodeling and dysfunction after experimental myocardial infarction: a new action for an old drug? Circulation. 2004;110:2175–9.

    Article  CAS  Google Scholar 

  60. Xiao J, Deng SB, She Q, Li J, Kao GY, Wang JS, Ma Y. Allopurinol ameliorates cardiac function in non-hyperuricaemic patients with chronic heart failure. Eur Rev Med Pharmacol Sci. 2016;20:756–61.

    CAS  Google Scholar 

  61. Hare JM, Mangal B, Brown J, et al. Impact of oxypurinol in patients with symptomatic heart failure. J Am Coll Cardiol. 2008;51:2301–9.

    Article  CAS  Google Scholar 

  62. Givertz MM, Anstrom KJ, Redfield MM, et al. Effects of xanthine oxidase inhibition in hyperuricemic heart failure patients: the xanthine oxidase inhibition for hyperuricemic heart failure patients (EXACT-HF) study. Circulation. 2015;131:1763–71.

    Article  CAS  Google Scholar 

  63. Zhang M, Solomon DH, Desai RJ, et al. Assessment of cardiovascular risk in older patients with gout initiating febuxostat versus allopurinol: population-based cohort study. Circulation. 2018;138:1116–26.

    Article  Google Scholar 

  64. Kojima S, Matsui K, Ogawa H, et al. Rationale, design, and baseline characteristics of a study to evaluate the effect of febuxostat in preventing cerebral, cardiovascular, and renal events in patients with hyperuricemia. J Cardiol. 2017;69:169–75.

    Article  Google Scholar 

  65. Kimura K, Hosoya T, Uchida S, et al. Febuxostat therapy for patients with stage 3 CKD and asymptomatic hyperuricemia: a randomized trial. Am J Kidney Dis. 2018;72:798–810.

    Article  CAS  Google Scholar 

  66. Yokota T, Fukushima A, Kinugawa S, et al. Randomized trial of effect of urate-lowering agent febuxostat in chronic heart failure patients with hyperuricemia (LEAF-CHF): study design. Int Heart J. 2018;59:976–82.

    Article  CAS  Google Scholar 

  67. Chino Y, Samukawa Y, Sakai S, et al. SGLT2 inhibitor lowers serum uric acid through alteration of uric acid transport activity in renal tubule by increased glycosuria: uricosuric effect of SGLT2 inhibitor. Biopharm Drug Dispos. 2014;35:391–404.

    Article  CAS  Google Scholar 

  68. Davies MJ, Trujillo A, Vijapurkar U, et al. Effect of canagliflozin on serum uric acid in patients with type 2 diabetes mellitus. Diabetes Obes Metab. 2015;17:426–9.

    Article  CAS  Google Scholar 

  69. Neal B, Perkovic V, Mahaffey KW, et al. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med. 2017;377:644–57.

    Article  CAS  Google Scholar 

  70. Zinman B, Wanner C, Lachin JM, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015;373:2117–28.

    Article  CAS  Google Scholar 

  71. Inzucchi SE, Zinman B, Fitchett D, et al. How does empagliflozin reduce cardiovascular mortality? Insights from a mediation analysis of the EMPA-REG OUTCOME trial. Diabetes Care. 2018;41:356–63.

    Article  CAS  Google Scholar 

  72. McDowell K, Welsh P, Docherty KF, Morrow DA, Jhund PS, de Boer RA, O'Meara E, Inzucchi SE, Køber L, Kosiborod MN, Martinez FA, Ponikowski P, Hammarstedt A, Langkilde AM, Sjöstrand M, Lindholm D, Solomon SD, Sattar N, Sabatine MS, McMurray JJV. Dapagliflozin reduces uric acid concentration, an independent predictor of adverse outcomes in DAPA-HF. Eur J Heart Fail. 2022;24(6):1066–76.

    Article  CAS  Google Scholar 

  73. Anker SD, Butler J, Filippatos G, Ferreira JP, Bocchi E, Böhm M, Brunner-La Rocca HP, Choi DJ, Chopra V, Chuquiure-Valenzuela E, Giannetti N, Gomez-Mesa JE, Janssens S, Januzzi JL, Gonzalez-Juanatey JR, Merkely B, Nicholls SJ, Perrone SV, Piña IL, Ponikowski P, Senni M, Sim D, Spinar J, Squire I, Taddei S, Tsutsui H, Verma S, Vinereanu D, Zhang J, Carson P, CSP L, Marx N, Zeller C, Sattar N, Jamal W, Schnaidt S, Schnee JM, Brueckmann M, Pocock SJ, Zannad F, Packer M, EMPEROR-Preserved Trial Investigators. Empagliflozin in heart failure with a preserved ejection fraction. N Engl J Med. 2021;385(16):1451–61.

    Article  CAS  Google Scholar 

  74. McMurray JJV, Packer M, Desai AS, et al. Angiotensin–neprilysin inhibition versus enalapril in heart failure. N Engl J Med. 2014;371:993–1004.

    Article  Google Scholar 

  75. Mogensen UM, Køber L, Jhund PS, et al. Sacubitril/valsartan reduces serum uric acid concentration, an independent predictor of adverse outcomes in PARADIGM-HF: sacubitril/valsartan, uric acid, and heart failure. Eur J Heart Fail. 2018;20:514–22.

    Article  CAS  Google Scholar 

  76. Selvaraj S, Claggett BJ, Pfeffer MA, Desai AS, Mc Causland FR, McGrath MM, Anand IS, van Veldhuisen DJ, Kober L, Janssens S, Cleland JGF, Pieske B, Rouleau JL, Zile MR, Shi VC, Lefkowitz MP, McMurray JJV, Solomon SD. Serum uric acid, influence of sacubitril–valsartan, and cardiovascular outcomes in heart failure with preserved ejection fraction: PARAGON-HF. Eur J Heart Fail. 2020;22:2093–101.

    Article  CAS  Google Scholar 

  77. Gheorghiade M, Greene SJ, Butler J, Filippatos G, Lam CSP, Maggioni AP, Ponikowski P, Shah SJ, Solomon SD, Kraigher-Krainer E, Samano ET, Müller K, Roessig L, Pieske B, for the SOCRATES-REDUCED Investigators and Coordinators. Effect of Vericiguat, a soluble guanylate cyclase stimulator, on natriuretic peptide levels in patients with worsening chronic heart failure and reduced ejection fraction. The SOCRATES-REDUCED randomized trial. JAMA. 2015;314(21):2251–62.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Borghi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Borghi, C., Adorno, A., Gallelli, I., Dall’Olio, M. (2023). The Role of Uric Acid in Hypertension and Heart Failure. In: Dorobantu, M., Voicu, V., Grassi, G., Agabiti-Rosei, E., Mancia, G. (eds) Hypertension and Heart Failure. Updates in Hypertension and Cardiovascular Protection. Springer, Cham. https://doi.org/10.1007/978-3-031-39315-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-39315-0_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-39314-3

  • Online ISBN: 978-3-031-39315-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics