We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Direct and Inverse Spectral Theorems for a Class of Canonical Systems with Two Singular Endpoints | SpringerLink

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Skip to main content

Direct and Inverse Spectral Theorems for a Class of Canonical Systems with Two Singular Endpoints

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

  • First Online:
Function Spaces, Theory and Applications

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A proof is given in [51] (in Russian).

  2. 2.

    A detailed account on the operator representation of scalar-valued generalized Nevanlinna functions can be found in [72, §1]. For a slightly different viewpoint and results for operator- (or matrix-) valued functions, see [18, 71, §3], or some of the vast more recent literature on operator models.

  3. 3.

    If the integral in (4.4) is 0, then \(\uptheta (x;\cdot )\) and \(\upvarphi (x;\cdot )\) are either of minimal exponential type or of order less than 1.

  4. 4.

    Here ‘\(l,1\)’ stands for ‘left vector, first entry’. This is a generic notation: for example, \(\pi _l\) is the projection from \(\mathbb C^2\times \mathbb C^2\) onto the first vector component, \(\pi _{r,2}\) onto the lower entry of the second vector component, etc. The use of ‘left’ and ‘right’ is motivated by the fact that the vectors correspond to boundary values at the left and right endpoint, respectively.

  5. 5.

    Remember in the following that \(T(H)\) is self-adjoint, and hence \(T(H)=T_{\max }(H)=S(H)\) in the notation of several previous papers like [59].

  6. 6.

    In [76] bounded operators are treated. The extension to the case of relations is provided in [21]. In [76] results are formulated for \(\Delta \) being an interval whose endpoints are not critical points. In our case, the only critical point is \(\infty \). Moreover, with the usual measure-theoretic extension process one can define \(E(\Delta )\) for each bounded Borel set; cf. the first paragraph in the proof of Lemma 5.4 below. We tacitly use this fact and often formulate results for bounded Borel sets although in the original references only intervals were considered.

  7. 7.

    The set on the right-hand side of [84, Theorem 3.9 (v)] is certainly non-empty.

References

  1. S. Albeverio, F. Gesztesy, R. Høegh-Krohn and H. Holden, Solvable Models in Quantum Mechanics. Second edition. With an appendix by Pavel Exner. AMS Chelsea Publishing, Providence, RI, 2005.

    MATH  Google Scholar 

  2. S. Albeverio, R. Hryniv and Ya. Mykytyuk, Inverse spectral problems for Sturm–Liouville operators in impedance form. J. Funct. Anal.222 (2005), 143–177.

    Google Scholar 

  3. S. Albeverio, R. Hryniv and Ya. Mykytyuk, Scattering theory for Schrödinger operators with Bessel-type potentials. J. Reine Angew. Math.666 (2012), 83–113.

    Google Scholar 

  4. V.I. Arnol\('\)d, Mathematical Methods of Classical Mechanics, Graduate Texts in Mathematics, vol. 60, Springer-Verlag, New York, 1989.

    Google Scholar 

  5. D.Z. Arov and H. Dym, J-Contractive Matrix Valued Functions and Related Topics. Encyclopedia of Mathematics and its Applications, vol. 116. Cambridge University Press, Cambridge, 2008.

    Google Scholar 

  6. F.V. Atkinson, Discrete and Continuous Boundary Problems. Mathematics in Science and Engineering, vol. 8. Academic Press, New York, 1964.

    Google Scholar 

  7. C. Bennewitz, A proof of the local Borg–Marchenko theorem. Comm. Math. Phys.218 (2001), 131–132.

    Article  MathSciNet  MATH  Google Scholar 

  8. C. Bennewitz, A Paley–Wiener theorem with applications to inverse spectral theory. In: Advances in Differential Equations and Mathematical Physics (Birmingham, AL, 2002). Contemp. Math., vol. 327, Amer. Math. Soc., Providence, RI, 2003, pp. 21–31.

    Google Scholar 

  9. C. Bennewitz and W.N. Everitt, The Titchmarsh–Weyl eigenfunction expansion theorem for Sturm–Liouville differential equations. In: Sturm–Liouville Theory. Birkhäuser, Basel, 2005, pp. 137–171.

    Google Scholar 

  10. J. Bognár, Indefinite Inner Product Spaces. Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 78. Springer-Verlag, New York, 1974.

    Google Scholar 

  11. L. de Branges, Some Hilbert spaces of entire functions. Trans. Amer. Math. Soc.96 (1960), 259–295.

    Article  MathSciNet  MATH  Google Scholar 

  12. L. de Branges, Some Hilbert spaces of entire functions. II. Trans. Amer. Math. Soc.99 (1961), 118–152.

    Google Scholar 

  13. L. de Branges, Some Hilbert spaces of entire functions. III. Trans. Amer. Math. Soc.100 (1961), 73–115.

    Google Scholar 

  14. L. de Branges, Some Hilbert spaces of entire functions. IV. Trans. Amer. Math. Soc.105 (1962), 43–83.

    Google Scholar 

  15. L. de Branges, Hilbert Spaces of Entire Functions. Prentice-Hall Inc., Englewood Cliffs, N.J., 1968.

    MATH  Google Scholar 

  16. R. Brunnhuber, J. Eckhardt, A. Kostenko and G. Teschl, Singular Weyl–Titchmarsh–Kodaira theory for one-dimensional Dirac operators. Monatsh. Math.174 (2014), 515–547.

    Article  MathSciNet  MATH  Google Scholar 

  17. K.P. Bube and R. Burridge, The one-dimensional inverse problem of reflection seismology. SIAM Rev.25 (1983), 497–559.

    Article  MathSciNet  MATH  Google Scholar 

  18. K. Daho and H. Langer, Matrix functions of the class \(N_\kappa \). Math. Nachr.120 (1985), 275–294.

    Google Scholar 

  19. E.B. Davies, Singular Schrödinger operators in one dimension. Mathematika59 (2013), 141–159.

    Article  MathSciNet  MATH  Google Scholar 

  20. V.A. Derkach, On extensions of the Laguerre operator in spaces with an indefinite metric. Mat. Zametki63 (1998), 509–521.

    MathSciNet  Google Scholar 

  21. A. Dijksma and H. de Snoo, Symmetric and selfadjoint relations in Kreı̆n spaces. II. Ann. Acad. Sci. Fenn. Ser. A I Math.12 (1987), 199–216.

    Google Scholar 

  22. A. Dijksma, H. Langer, A. Luger and Y. Shondin, A factorization result for generalized Nevanlinna functions of the class \(\mathcal N_\kappa \). Integral Equations Operator Theory36 (2000), 121–125.

    Google Scholar 

  23. A. Dijksma, H. Langer and Y. Shondin, Rank one perturbations at infinite coupling in Pontryagin spaces. J. Funct. Anal.209 (2004), 206–246.

    Article  MathSciNet  MATH  Google Scholar 

  24. A. Dijksma, H. Langer, Y. Shondin and C. Zeinstra, Self-adjoint operators with inner singularities and Pontryagin spaces. In: Operator Theory and Related Topics, vol. II (Odessa, 1997). Oper. Theory Adv. Appl., vol. 118. Birkhäuser, Basel, 2000, pp. 105–175.

    Google Scholar 

  25. A. Dijksma, A. Luger and Y. Shondin, Minimal models for \(\mathcal N_\kappa ^\infty \)-functions. In: Operator Theory and Indefinite Inner Product Spaces. Oper. Theory Adv. Appl., vol. 163. Birkhäuser, Basel, 2006, pp. 97–134.

    Google Scholar 

  26. A. Dijksma, A. Luger and Y. Shondin, Approximation of \(\mathcal N_\kappa ^\infty \)-functions. I: Models and regularization. In: Spectral Theory in Inner Product Spaces and Applications. Oper. Theory Adv. Appl., vol. 188. Birkhäuser Verlag, Basel, 2009, pp. 87–112.

    Google Scholar 

  27. A. Dijksma, A. Luger and Y. Shondin, Approximation of \(\mathcal N_\kappa ^\infty \)-functions II: Convergence of models. In: Recent Advances in Operator Theory in Hilbert and Krein Spaces. Oper. Theory Adv. Appl., vol. 198. Birkhäuser Verlag, Basel, 2010, pp. 125–169.

    Google Scholar 

  28. A. Dijksma and Y. Shondin, Singular point-like perturbations of the Bessel operator in a Pontryagin space. J. Differential Equations164 (2000), 49–91.

    Article  MathSciNet  MATH  Google Scholar 

  29. A. Dijksma and Y. Shondin, Singular point-like perturbations of the Laguerre operator in a Pontryagin space. In: Operator Methods in Ordinary and Partial Differential Equations (Stockholm, 2000). Oper. Theory Adv. Appl., vol. 132. Birkhäuser, Basel, 2002, pp. 141–181.

    Google Scholar 

  30. J. Eckhardt, Inverse uniqueness results for Schrödinger operators using de Branges theory. Complex Anal. Oper. Theory8 (2014), 37–50.

    Article  MathSciNet  MATH  Google Scholar 

  31. J. Eckhardt, F. Gesztesy, R. Nichols and G. Teschl, Inverse spectral theory for Sturm–Liouville operators with distributional potentials. J. Lond. Math. Soc. (2)88 (2013), 801–828.

    Article  MathSciNet  MATH  Google Scholar 

  32. J. Eckhardt and G. Teschl, Uniqueness results for one-dimensional Schrödinger operators with purely discrete spectra. Trans. Amer. Math. Soc.365 (2013), 3923–3942.

    Article  MathSciNet  MATH  Google Scholar 

  33. H. Flanders, Differential Forms with Applications to the Physical Sciences. Second edition. Dover Books on Advanced Mathematics. Dover Publications Inc., New York, 1989.

    MATH  Google Scholar 

  34. B. Fritzsche, B. Kirstein and A.L. Sakhnovich, Weyl functions of generalized Dirac systems: integral representation, the inverse problem and discrete interpolation. J. Anal. Math.116 (2012), 17–51.

    Article  MathSciNet  MATH  Google Scholar 

  35. C. Fulton, Titchmarsh–Weyl m-functions for second-order Sturm–Liouville problems with two singular endpoints. Math. Nachr.281 (2008), 1418–1475.

    Article  MathSciNet  MATH  Google Scholar 

  36. C. Fulton and H. Langer, Sturm–Liouville operators with singularities and generalized Nevanlinna functions. Complex Anal. Oper. Theory4 (2010), 179–243.

    Article  MathSciNet  MATH  Google Scholar 

  37. C. Fulton, H. Langer and A. Luger, Mark Krein’s method of directing functionals and singular potentials. Math. Nachr.285 (2012), 1791–1798.

    Article  MathSciNet  MATH  Google Scholar 

  38. F. Gesztesy and B. Simon, On local Borg–Marchenko uniqueness results. Comm. Math. Phys.211 (2000), 273–287.

    Article  MathSciNet  MATH  Google Scholar 

  39. F. Gesztesy and M. Zinchenko, On spectral theory for Schrödinger operators with strongly singular potentials. Math. Nachr.279 (2006), 1041–1082.

    Article  MathSciNet  MATH  Google Scholar 

  40. D.J. Gilbert, On subordinacy and spectral multiplicity for a class of singular differential operators. Proc. Roy. Soc. Edinburgh Sect. A128 (1998), 549–584.

    Article  MathSciNet  MATH  Google Scholar 

  41. I.C. Gohberg and M.G. Krein, Theory and Applications of Volterra Operators in Hilbert Space, Translations of Mathematical Monographs, vol. 24. American Mathematical Society, Providence, R.I., 1970.

    Google Scholar 

  42. S. Hassi, H. de Snoo and H. Winkler, Boundary-value problems for two-dimensional canonical systems. Integral Equations Operator Theory36 (2000), 445–479.

    Article  MathSciNet  MATH  Google Scholar 

  43. S. Hassi, C. Remling and H. de Snoo, Subordinate solutions and spectral measures of canonical systems. Integral Equations Operator Theory37 (2000), 48–63.

    Article  MathSciNet  MATH  Google Scholar 

  44. G. Herglotz, Über Potenzreihen mit positivem, reellem Teil im Einheitskreis [German]. Leipz. Ber.63 (1911), 501–511.

    MATH  Google Scholar 

  45. L. Hörmander, The Analysis of Linear Partial Differential Operators. I. Distribution Theory and Fourier Analysis. Second edition. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 256. Springer-Verlag, Berlin, 1990.

    Google Scholar 

  46. R.O. Hryniv and Y.V. Mykytyuk, Self-adjointness of Schrödinger operators with singular potentials. Methods Funct. Anal. Topology18 (2012), 152–159.

    MathSciNet  MATH  Google Scholar 

  47. R. Hryniv and P. Sacks, Numerical solution of the inverse spectral problem for Bessel operators. J. Comput. Appl. Math.235 (2010), 120–136.

    Article  MathSciNet  MATH  Google Scholar 

  48. P. Jonas, H. Langer and B. Textorius, Models and unitary equivalence of cyclic selfadjoint operators in Pontrjagin spaces. In: Operator Theory and Complex Analysis (Sapporo, 1991). Oper. Theory Adv. Appl., vol. 59. Birkhäuser, Basel, 1992, pp. 252–284.

    Google Scholar 

  49. I. Kac, On Hilbert spaces generated by monotone Hermitian matrix-functions. Har\({ }^{\prime }\)kov Gos. Univ. Uč. Zap. 34 = Zap. Mat. Otd. Fiz.-Mat. Fak. i Har\({ }^{\prime }\)kov. Mat. Obšč. (4)22 (1951), 95–113. 1950.

    Google Scholar 

  50. I.S. Kac, On the spectral multiplicity of a second-order differential operator. Dokl. Akad. Nauk SSSR145 (1962), 510–513.

    MathSciNet  Google Scholar 

  51. I.S. Kac, Spectral multiplicity of a second-order differential operator and expansion in eigenfunction. Izv. Akad. Nauk SSSR Ser. Mat.27 (1963), 1081–1112.

    MathSciNet  Google Scholar 

  52. I.S. Kac, Linear relations, generated by a canonical differential equation on an interval with a regular endpoint, and expansibility in eigenfunctions. VINITI Deponirovannye Nauchnye Raboty195 (1985), 50 pp., b.o. 720, Deposited in Ukr NIINTI, no. 1453, 1984.

    Google Scholar 

  53. I.S. Kac, Inclusion of the Hamburger power moment problem in the spectral theory of canonical systems. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI)262 (1999) (Issled. po Linein. Oper. i Teor. Funkts. 27), 147–171, 234. English translation: J. Math. Sci. (New York)110 (2002), 2991–3004.

    Google Scholar 

  54. I.S. Kac and M.G. Krein, On spectral functions of a string, pp. 648–737. Izdat. ‘Mir’, Moscow, 1968. Addition II in F.V. Atkinson, Diskretnye i nepreryvnye granichnye zadachi (Russian translation of ‘Discrete and Continuous Boundary Problems’). English translation: Amer. Math. Soc. Transl. (2)103 (1974), 19–102.

    Google Scholar 

  55. M. Kaltenbäck, H. Winkler and H. Woracek, Generalized Nevanlinna functions with essentially positive spectrum. J. Operator Theory55 (2006), 17–48.

    MathSciNet  MATH  Google Scholar 

  56. M. Kaltenbäck and H. Woracek, Generalized resolvent matrices and spaces of analytic functions. Integral Equations Operator Theory32 (1998), 282–318.

    Article  MathSciNet  MATH  Google Scholar 

  57. M. Kaltenbäck and H. Woracek, Pontryagin spaces of entire functions. II. Integral Equations Operator Theory33 (1999), 305–380.

    Google Scholar 

  58. M. Kaltenbäck and H. Woracek, Pontryagin spaces of entire functions. III. Acta Sci. Math. (Szeged)69 (2003), 241–310.

    Google Scholar 

  59. M. Kaltenbäck and H. Woracek, Pontryagin spaces of entire functions. IV. Acta Sci. Math. (Szeged)72 (2006), 709–835.

    Google Scholar 

  60. M. Kaltenbäck and H. Woracek, Canonical differential equations of Hilbert–Schmidt type. In: Operator Theory in Inner Product Spaces. Oper. Theory Adv. Appl., vol. 175. Birkhäuser, Basel, 2007, pp. 159–168.

    Google Scholar 

  61. M. Kaltenbäck and H. Woracek, Pontryagin spaces of entire functions. VI. Acta Sci. Math. (Szeged)76 (2010), 511–560.

    Google Scholar 

  62. M. Kaltenbäck and H. Woracek, Pontryagin spaces of entire functions. V. Acta Sci. Math. (Szeged)77 (2011), 223–336.

    Google Scholar 

  63. K. Kodaira, The eigenvalue problem for ordinary differential equations of the second order and Heisenberg’s theory of S-matrices. Amer. J. Math.71 (1949), 921–945.

    Article  MathSciNet  MATH  Google Scholar 

  64. A. Kostenko, A. Sakhnovich and G. Teschl, Inverse eigenvalue problems for perturbed spherical Schrödinger operators. Inverse Problems26 (2010), 105013, 14 pp.

    Article  MathSciNet  MATH  Google Scholar 

  65. A. Kostenko, A. Sakhnovich and G. Teschl, Commutation methods for Schrödinger operators with strongly singular potentials. Math. Nachr.285 (2012), 392–410.

    Article  MathSciNet  MATH  Google Scholar 

  66. A. Kostenko, A. Sakhnovich and G. Teschl, Weyl–Titchmarsh theory for Schrödinger operators with strongly singular potentials. Int. Math. Res. Not. IMRN2012 (2012), 1699–1747.

    MATH  Google Scholar 

  67. A. Kostenko and G. Teschl, On the singular Weyl–Titchmarsh function of perturbed spherical Schrödinger operators. J. Differential Equations250 (2011), 3701–3739.

    Article  MathSciNet  MATH  Google Scholar 

  68. A. Kostenko and G. Teschl, Spectral asymptotics for perturbed spherical Schrödinger operators and applications to quantum scattering. Comm. Math. Phys.322 (2013), 255–275.

    Article  MathSciNet  MATH  Google Scholar 

  69. A.M. Krall, Laguerre polynomial expansions in indefinite inner product spaces. J. Math. Anal. Appl.70 (1979), 267–279.

    Article  MathSciNet  MATH  Google Scholar 

  70. A.M. Krall, On boundary values for the Laguerre operator in indefinite inner product spaces. J. Math. Anal. Appl.85 (1982), 406–408.

    Article  MathSciNet  MATH  Google Scholar 

  71. M.G. Krein and H. Langer, Über die Q-Funktion eines \(\pi \)-hermiteschen Operators im Raume \(\Pi _\kappa \) [German]. Acta Sci. Math. (Szeged)34 (1973), 191–230.

    Google Scholar 

  72. M.G. Krein and H. Langer, Über einige Fortsetzungsprobleme, die eng mit der Theorie hermitescher Operatoren im Raume \(\Pi _\kappa \) zusammenhängen. I. Einige Funktionenklassen und ihre Darstellungen [German]. Math. Nachr.77 (1977), 187–236.

    Google Scholar 

  73. M.G. Krein and H. Langer, On some continuation problems which are closely related to the theory of operators in spaces \(\Pi _\kappa \). IV. Continuous analogues of orthogonal polynomials on the unit circle with respect to an indefinite weight and related continuation problems for some classes of functions. J. Operator Theory13 (1985), 299–417.

    Google Scholar 

  74. M.G. Krein and H. Langer, Continuation of Hermitian positive definite functions and related questions. Integral Equations Operator Theory78 (2014), 1–69.

    Article  MathSciNet  MATH  Google Scholar 

  75. P. Kurasov and A. Luger, An operator theoretic interpretation of the generalized Titchmarsh–Weyl coefficient for a singular Sturm–Liouville problem. Math. Phys. Anal. Geom.14 (2011), 115–151.

    Article  MathSciNet  MATH  Google Scholar 

  76. H. Langer, Spectral functions of definitizable operators in Krein spaces. In: Functional Analysis (Dubrovnik, 1981). Lecture Notes in Math., vol. 948. Springer, Berlin, 1982, pp. 1–46.

    Google Scholar 

  77. H. Langer, A characterization of generalized zeros of negative type of functions of the class \(N_\kappa \). In: Advances in Invariant Subspaces and other Results of Operator Theory (Timişoara and Herculane, 1984). Oper. Theory Adv. Appl., vol. 17. Birkhäuser, Basel, 1986, pp. 201–212.

    Google Scholar 

  78. H. Langer, Transfer functions and local spectral uniqueness for Sturm–Liouville operators, canonical systems and strings. Integral Equations Operator Theory85 (2016), 1–23.

    Article  MathSciNet  MATH  Google Scholar 

  79. H. Langer, A. Luger and V. Matsaev, Convergence of generalized Nevanlinna functions. Acta Sci. Math. (Szeged)77 (2011), 425–437.

    Article  MathSciNet  MATH  Google Scholar 

  80. M. Langer and H. Woracek, A function space model for canonical systems with an inner singularity. Acta Sci. Math. (Szeged)77 (2011), 101–165.

    Article  MathSciNet  MATH  Google Scholar 

  81. M. Langer and H. Woracek, A local inverse spectral theorem for Hamiltonian systems. Inverse Problems27 (2011), 055002, 17 pp.

    Article  MathSciNet  MATH  Google Scholar 

  82. M. Langer and H. Woracek, Indefinite Hamiltonian systems whose Titchmarsh–Weyl coefficients have no finite generalized poles of non-positive type. Oper. Matrices7 (2013), 477–555.

    Article  MathSciNet  MATH  Google Scholar 

  83. M. Langer and H. Woracek, The exponential type of the fundamental solution of an indefinite Hamiltonian system. Complex Anal. Oper. Theory7 (2013), 285–312.

    Article  MathSciNet  MATH  Google Scholar 

  84. M. Langer and H. Woracek, Distributional representations of generalized Nevanlinna functions. Math. Nachr.288 (2015), 1127–1149.

    Article  MathSciNet  MATH  Google Scholar 

  85. A.E. Lifschitz, Magnetohydrodynamics and Spectral Theory. Developments in Electromagnetic Theory and Applications, vol. 4. Kluwer Academic Publishers Group, Dordrecht, 1989.

    Google Scholar 

  86. A. Luger and C. Neuner, An operator theoretic interpretation of the generalized Titchmarsh–Weyl function for perturbed spherical Schrödinger operators. Complex Anal. Oper. Theory9 (2015), 1391–1410.

    Article  MathSciNet  MATH  Google Scholar 

  87. A. Luger and C. Neuner, On the Weyl solution of the 1-dim Schrödinger operator with inverse fourth power potential. Monatsh. Math.180 (2016), 295–303.

    Article  MathSciNet  MATH  Google Scholar 

  88. J.R. McLaughlin, Analytical methods for recovering coefficients in differential equations from spectral data. SIAM Rev.28 (1986), 53–72.

    Article  MathSciNet  MATH  Google Scholar 

  89. H.-D. Niessen and A. Zettl, Singular Sturm–Liouville problems: the Friedrichs extension and comparison of eigenvalues. Proc. London Math. Soc. (3)64 (1992), 545–578.

    Article  MathSciNet  MATH  Google Scholar 

  90. B.C. Orcutt, Canonical Differential Equations. ProQuest LLC, Ann Arbor, MI, 1969. PhD Thesis, University of Virginia.

    Google Scholar 

  91. G. Pick, Über die Beschränkungen analytischer Funktionen, welche durch vorgegebene Funktionswerte bewirkt werden [German]. Math. Ann.77 (1915), 7–23.

    Article  MathSciNet  MATH  Google Scholar 

  92. C. Remling, Schrödinger operators and de Branges spaces. J. Funct. Anal.196 (2002), 323–394.

    Article  MathSciNet  MATH  Google Scholar 

  93. C. Remling, Spectral Theory of Canonical Systems. De Gruyter Studies in Mathematics, vol. 70. De Gruyter, Berlin, 2018.

    Google Scholar 

  94. R. Romanov, Canonical systems and de Branges spaces, arXiv:1408.6022v1, 2014.

    Google Scholar 

  95. L.A. Sakhnovich, Spectral Theory of Canonical Differential Systems. Method of Operator Identities. Translated from the Russian manuscript by E. Melnichenko. Oper. Theory Adv. Appl., vol. 107. Birkhäuser Verlag, Basel, 1999.

    Google Scholar 

  96. A.M. Savchuk and A.A. Shkalikov, Sturm–Liouville operators with singular potentials. Mat. Zametki66 (1999), 897–912.

    MathSciNet  MATH  Google Scholar 

  97. L.O. Silva, G. Teschl and J.H. Toloza, Singular Schrödinger operators as self-adjoint extensions of N-entire operators. Proc. Amer. Math. Soc.143 (2015), 2103–2115.

    Article  MathSciNet  MATH  Google Scholar 

  98. L.O. Silva and J.H. Toloza, A class of n-entire Schrödinger operators. Complex Anal. Oper. Theory8 (2014), 1581–1599.

    Article  MathSciNet  MATH  Google Scholar 

  99. B. Simon, A new approach to inverse spectral theory. I. Fundamental formalism. Ann. of Math. (2)150 (1999), 1029–1057.

    Google Scholar 

  100. H. de Snoo and H. Winkler, Canonical systems of differential equations with self-adjoint interface conditions on graphs. Proc. Roy. Soc. Edinburgh Sect. A135 (2005), 297–315.

    Article  MathSciNet  MATH  Google Scholar 

  101. H. de Snoo and H. Winkler, Two-dimensional trace-normed canonical systems of differential equations and selfadjoint interface conditions. Integral Equations Operator Theory51 (2005), 73–108.

    Article  MathSciNet  MATH  Google Scholar 

  102. H. Winkler, The inverse spectral problem for canonical systems. Integral Equations Operator Theory22 (1995), 360–374.

    Article  MathSciNet  MATH  Google Scholar 

  103. H. Winkler, On transformations of canonical systems. In: Operator Theory and Boundary Eigenvalue Problems (Vienna, 1993). Oper. Theory Adv. Appl., vol. 80. Birkhäuser, Basel, 1995, pp. 276–288.

    Google Scholar 

  104. H. Winkler and H. Woracek, Reparametrizations of non trace-normed Hamiltonians. In: Spectral Theory, Mathematical System Theory, Evolution Equations, Differential and Difference equations. Oper. Theory Adv. Appl., vol. 221. Birkhäuser/Springer Basel AG, Basel, 2012, pp. 667–690.

    Google Scholar 

  105. H. Winkler and H. Woracek, A growth condition for Hamiltonian systems related with Krein strings. Acta Sci. Math. (Szeged)80 (2014), 31–94.

    Article  MathSciNet  MATH  Google Scholar 

  106. H. Woracek, Existence of zerofree functions N-associated to a de Branges Pontryagin space. Monatsh. Math.162 (2011), 453–506.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The first author gratefully acknowledges the support of the Nuffield Foundation, grant no. NAL/01159/G, and the Engineering and Physical Sciences Research Council (EPSRC), grant no. EP/E037844/1. The second author was supported by the joint project I 4600 of the Austrian Science Fund (FWF) and the Russian Foundation for Basic Research (RFBR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harald Woracek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Langer, M., Woracek, H. (2023). Direct and Inverse Spectral Theorems for a Class of Canonical Systems with Two Singular Endpoints. In: Binder, I., Kinzebulatov, D., Mashreghi, J. (eds) Function Spaces, Theory and Applications. Fields Institute Communications, vol 87. Springer, Cham. https://doi.org/10.1007/978-3-031-39270-2_5

Download citation

Publish with us

Policies and ethics