Skip to main content

Arrival Processes with Clustering

  • Chapter
  • First Online:
The Cramér–Lundberg Model and Its Variants

Part of the book series: Springer Actuarial ((SPACTE))

  • 126 Accesses

Abstract

In this chapter we focus on the Cramér-Lundberg model driven by a claim arrival process with randomly fluctuating rate. We consecutively discuss models in which the arrival rate evolves as an M/G/\(\infty \) queue (to do justice to a fluctuating number of customers), as a shot-noise process (to model the impact of catastrophic events) and as a Hawkes process (to model the effect of claims triggering additional claims). The main objective is to determine, in the light-tailed context, the decay rate of the ruin probability. The proofs rely either on applying a change-of-measure, or on a large deviations based argumentation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 84.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H. Albrecher, S. Asmussen, Ruin probabilities and aggregate claims distributions for shot noise Cox processes. Scand. Actuar. J. 2006, 86–110 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. S. Asmussen, H. Albrecher, Ruin Probabilities (World Scientific, Singapore, 2010)

    Book  MATH  Google Scholar 

  3. O. Boxma, M. Mandjes, Shot-noise queueing models. Queueing Syst. 99, 121–159 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  4. A. Dassios, J. Jang, Pricing of catastrophe reinsurance and derivatives using the Cox process with shot noise intensity. Finance Stoch. 7, 73–95 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. A. Daw, J. Pender. Queues driven by Hawkes processes. Stoch. Syst. 8, 192–229 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  6. A. Dembo, O. Zeitouni, Large Deviations Techniques and Applications (Springer, New York, 1998)

    Book  MATH  Google Scholar 

  7. N. Duffield, N. O’Connell, Large deviations and overflow probabilities for the general single-server queue, with applications. Math. Proc. Camb. Philos. Soc. 118, 363–374 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  8. A. Hawkes, Spectra of some self-exciting and mutually exciting point processes. Biometrika 58, 83–90 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  9. A. Hawkes, Point spectra of some mutually exciting point processes. J. R. Stat. Soc. Series B 33, 438–443 (1971)

    MathSciNet  MATH  Google Scholar 

  10. A. Hawkes, D. Oakes, A cluster representation of a self-exciting process. J. Appl. Probab. 11, 493–503 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  11. P. Jagers, Branching Processes with Biological Applications (Wiley, London, 1975)

    MATH  Google Scholar 

  12. R. Karim, R. Laeven, M. Mandjes, Exact and asymptotic analysis of general multivariate Hawkes processes and induced population processes (2021). Submitted. https://arxiv.org/abs/2106.03560

  13. C. Klüppelberg, T. Mikosch, Explosive Poisson shot noise processes with applications to risk reserves. Bernoulli 1, 125–147 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  14. D. Koops, M. Saxena, O. Boxma, M. Mandjes, Infinite-server queues with Hawkes input. J. Appl. Probab. 55, 920–943 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  15. P. Laub, Y. Lee, T. Taimre, The Elements of Hawkes Processes (Springer, New York, 2021)

    Book  MATH  Google Scholar 

  16. M. Mandjes, A. Weiss, Sample path large deviations for a multiple time-scale queueing model. Bell Laboratories, Lucent Technologies (1999). Internal report

    Google Scholar 

  17. Z. Palmowski, Lundberg inequalities in a diffusion environment. Insur. Math. Econ. 31, 303–313 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  18. G. Stabile, G. Torrisi, Risk processes with non-stationary Hawkes claims arrivals. Methodol. Comput. Appl. Probab. 12, 415–429 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. L. Zhu, Ruin probabilities for risk processes with non-stationary arrivals and subexponential claims. Insur. Math. Econ. 53, 544–550 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mandjes, M., Boxma, O. (2023). Arrival Processes with Clustering. In: The Cramér–Lundberg Model and Its Variants. Springer Actuarial(). Springer, Cham. https://doi.org/10.1007/978-3-031-39105-7_8

Download citation

Publish with us

Policies and ethics