Skip to main content

Part of the book series: Springer Actuarial ((SPACTE))

  • 140 Accesses

Abstract

This chapter provides asymptotic expressions for the ruin probability in the regime that the initial reserve level u grows large. One needs to distinguish between the case that the claim sizes are light-tailed, in which the ruin probability decays essentially exponentially, and the case that the claim sizes are heavy-tailed, in which the ruin probability decays as the complementary distribution function of a residual claim size. While the focus in this chapter is on the asymptotics of the all-time ruin probability \(p(u)\), we also briefly discuss the asymptotics of its finite-time counterpart \(p(u,t).\) We conclude this chapter by some comments on another limiting regime, corresponding to the heavy-traffic scaling in queueing theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 84.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G. Arfwedson, Research in collective risk theory: the case of equal risk sums. Scand. Actuar. J. 1955, 53–100 (1955)

    Article  MATH  Google Scholar 

  2. S. Asmussen, Applied Probability and Queues, 2nd edn. (Springer, New York, 2003)

    MATH  Google Scholar 

  3. S. Asmussen, H. Albrecher, Ruin Probabilities (World Scientific, Singapore, 2010)

    Book  MATH  Google Scholar 

  4. S. Asmussen, J. Teugels, Convergence rates for M/G/1 queues and ruin problems with heavy tails. J. Appl. Probab. 33, 1181–1190 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  5. B. von Bahr, Asymptotic ruin probabilities when exponential moments do not exist. Scand. Actuar. J. 1975, 6–10 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  6. J. Bertoin, R. Doney, Cramér’s estimate for Lévy processes. Stat. Probab. Lett. 21, 363–365 (1994)

    Article  MATH  Google Scholar 

  7. N. Bingham, C. Goldie, J. Teugels, Regular Variation (Cambridge University Press, Cambridge, 1987)

    Book  MATH  Google Scholar 

  8. A. Borovkov, Asymptotic Methods in Queueing Theory (Springer, Berlin, 1976)

    Google Scholar 

  9. O. Boxma, J. Cohen, Heavy-traffic analysis for the GI/G/1 queue with heavy-tailed service time distributions. Queueing Syst. 33, 177–204 (1999)

    Article  MATH  Google Scholar 

  10. H. Cramér, On the Mathematical Theory of Risk. Skandia Jubilee 4 (1930)

    Google Scholar 

  11. K. Dȩbicki, M. Mandjes, Queues and Lévy Fluctuation Theory (Springer, New York, 2015)

    Google Scholar 

  12. A. Dembo, O. Zeitouni, Large Deviations Techniques and Applications (Springer, New York, 1998)

    Book  MATH  Google Scholar 

  13. T. Dieker, Applications of factorization embeddings for Lévy processes. Adv. Appl. Probab. 38, 768–791 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. N. Duffield, N. O’Connell, Large deviations and overflow probabilities for the general single-server queue, with applications. Math. Proc. Camb. Philos. Soc. 118, 363–374 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  15. H. Hadwiger, Über die Wahrscheinlichkeit des Ruins bei einer grossen Zahl von Geschäften. Archiv für Mathematische Wirtschafts- und Sozialforschung 6, 131–135 (1940)

    MATH  Google Scholar 

  16. J. Kingman, On queues in heavy traffic. J. R. Stat. Soc. B24, 383–392 (1962)

    MathSciNet  MATH  Google Scholar 

  17. D. Konstantinides, Risk Theory: a Heavy-tail Approach (World Scientific, Singapore, 2018)

    MATH  Google Scholar 

  18. F. Lundberg, Försäkringsteknisk Rriskutjämning: Teori (F. Englunds Boktryckeri A.B., Stockholm, 1926)

    Google Scholar 

  19. A. Pakes, On the tail of waiting time distributions. J. Appl. Probab. 12, 555–564 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  20. E. Pitman, Subexponential distribution functions. J. Aust. Math. Soc. 29A, 337–347 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  21. C. Segerdahl, When does ruin occur in the collective theory of risk? Scand. Actuar. J. 1955, 22–36 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  22. D. Siegmund, Sequential Analysis (Springer, New York, 1985)

    Book  MATH  Google Scholar 

  23. J. Teugels, Estimation of ruin probabilities. Insur. Math. Econ. 1, 163–175 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  24. J. Teugels, N. Veraverbeke, Cramér-type estimates for the probability of ruin. CORE Discussion Paper, No 7316 (1973)

    Google Scholar 

  25. W. Whitt, Stochastic Process Limits (Springer, New York, 2002)

    Book  MATH  Google Scholar 

  26. B. Zwart, Queueing Systems with Heavy Tails. Ph.D. Thesis, Eindhoven University of Technology, 2001. http://alexandria.tue.nl/extra2/200112999.pdf

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mandjes, M., Boxma, O. (2023). Asymptotics. In: The Cramér–Lundberg Model and Its Variants. Springer Actuarial(). Springer, Cham. https://doi.org/10.1007/978-3-031-39105-7_2

Download citation

Publish with us

Policies and ethics