Skip to main content

Future Perspectives of Metabolomics: Gaps, Planning, and Recommendations

  • Chapter
  • First Online:
Metabolomics

Abstract

Metabolomics is a rapidly evolving field that has the potential to revolutionize our understanding of human health and disease. Recent advances in analytical technologies, coupled with the increasing availability of large-scale datasets, have enabled researchers to identify novel biomarkers and pathways that are associated with a wide range of diseases. In this chapter, we discuss some of the key trends and future directions in metabolomics research, including precision medicine, personalized nutrition, multi-omics integration, the role of artificial intelligence and machine learning in metabolomics data analytics, applications of metabolomics in translational biology, and its relationship with the drug development and futuristic wearable for faster disease detections and surveillance. We also highlight some of the challenges and recommendations to fully realize the potential of metabolomics for improving human health.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Breathalyzer tests have also been designed for diagnosis of viral and bacterial infections through volatile organic compound detection. Secondary electrospray ionization-mass spectrometry (SESI-MS) on mouse breath could detect infection as well as distinguish between different pathogens and strains [6], and a diagnostic breath test using gas chromatography-mass spectrometry (GC-MS) was approved for emergency use in the Covid-19 pandemic [7, 8].

  2. 2.

    Metabolomics analysis has been performed on an isolated mouse-embryonic fibroblast cell by sucking a cell’s contents into a nano-electrospray ionization tip and sent through a mass spectrometer to measure compounds of low molecular weight [165].

Abbreviations

AD:

Alzheimer’s disease

ANN:

Artificial neural network

AUC:

Area under the curve

CE-MS:

Capillary electrophoresis - Mass Spectrometry

CGM:

Continuous glucose monitor

CNN:

Convolutional neural network

DI-MS:

Direct infusion-mass spectrometry

DL:

Deep learning

EI-MS :

Electron ionization mass spectrometry

ELISA:

Enzyme-linked immunosorbent assay

FDR:

False discovery rate

GC-FID:

Gas chromatography-flame ionization detection

GC-MS:

Gas chromatography-mass spectrometry

hCG:

Human chorionic gonadotropin

HDL:

High-density lipoprotein

IEM:

Inborn errors of metabolism

LAESI:

Laser ablation electrospray ionization

LC-HRMS:

Liquid chromatography coupled to high-resolution mass spectrometry

LC-MS:

Liquid chromatography-mass spectrometry

LDL:

Low-density lipoprotein

LDTs:

Laboratory-developed tests

MALDI:

Matrix-assisted laser desorption/ionization

mGWAS:

Metabolic genome-wide association studies

ML:

Machine learning

mQTL:

Metabolites and quantitative trait loci

MSI:

Metabolomics Standards Initiative

NMR:

Nuclear magnetic resonance

PMRN:

Pharmacometabolomics Research Network

QSP:

Quantitative and systems pharmacology

SIMS:

Secondary ion mass spectrometry

SNPs:

Single nucleotide polymorphisms

VOC:

Volatile organic compound

References

  1. Oliver, S.G., et al., Systematic functional analysis of the yeast genome. Trends Biotechnol, 1998. 16(9): p. 373–8.

    Google Scholar 

  2. Junot, C., et al., High resolution mass spectrometry based techniques at the crossroads of metabolic pathways. Mass Spectrom Rev, 2014. 33(6): p. 471–500.

    Google Scholar 

  3. Shin, S.Y., et al., An atlas of genetic influences on human blood metabolites. Nat Genet, 2014. 46(6): p. 543–550.

    Google Scholar 

  4. Suhre, K., et al., Human metabolic individuality in biomedical and pharmaceutical research. Nature, 2011. 477(7362): p. 54–60.

    Google Scholar 

  5. Foster, M., et al., Uncovering PFAS and Other Xenobiotics in the Dark Metabolome Using Ion Mobility Spectrometry, Mass Defect Analysis, and Machine Learning. Environ Sci Technol, 2022. 56(12): p. 9133–9143.

    Google Scholar 

  6. Zhu, J., et al., Detecting bacterial lung infections: in vivo evaluation of in vitro volatile fingerprints. J Breath Res, 2013. 7(1): p. 016003.

    Google Scholar 

  7. Exline, M.C., et al., Exhaled nitric oxide detection for diagnosis of COVID-19 in critically ill patients. PLoS One, 2021. 16(10): p. e0257644.

    Google Scholar 

  8. McKinney, J., Coronavirus (COVID-19) Update: FDA Authorizes First COVID-19 Diagnostic Test Using Breath Samples, in Test provides results in less than three minutes. 2022, FDA.gov.

  9. Pietzner, M., et al., Plasma metabolites to profile pathways in noncommunicable disease multimorbidity. Nat Med, 2021. 27(3): p. 471–479.

    Google Scholar 

  10. Yu, Z., et al., Differences between human plasma and serum metabolite profiles. PLoS One, 2011. 6(7): p. e21230.

    Google Scholar 

  11. Trivedi, D.K., K.A. Hollywood, and R. Goodacre, Metabolomics for the masses: The future of metabolomics in a personalized world. New Horiz Transl Med, 2017. 3(6): p. 294–305.

    Google Scholar 

  12. Do, K.T., et al., Network-based approach for analyzing intra- and interfluid metabolite associations in human blood, urine, and saliva. J Proteome Res, 2015. 14(2): p. 1183–94.

    Google Scholar 

  13. Wishart, D.S., Metabolomics for Investigating Physiological and Pathophysiological Processes. Physiol Rev, 2019. 99(4): p. 1819–1875.

    Google Scholar 

  14. Hollywood, K., D.R. Brison, and R. Goodacre, Metabolomics: current technologies and future trends. Proteomics, 2006. 6(17): p. 4716–23.

    Google Scholar 

  15. Armitage, E.G. and C. Barbas, Metabolomics in cancer biomarker discovery: current trends and future perspectives. J Pharm Biomed Anal, 2014. 87: p. 1–11.

    Google Scholar 

  16. Kell, D.B., Metabolomic biomarkers: search, discovery and validation. Expert Review of Molecular Diagnostics, 2014. 7(4): p. 329–333.

    Google Scholar 

  17. Xia, J., et al., Translational biomarker discovery in clinical metabolomics: an introductory tutorial. Metabolomics, 2013. 9(2): p. 280–299.

    Google Scholar 

  18. Cui, Y., et al., The Exposome: Embracing the Complexity for Discovery in Environmental Health. Environ Health Perspect, 2016. 124(8): p. A137–40.

    Google Scholar 

  19. Rappaport, S.M., Genetic Factors Are Not the Major Causes of Chronic Diseases. PLoS One, 2016. 11(4): p. e0154387.

    Google Scholar 

  20. Andra, S.S., et al., Trends in the application of high-resolution mass spectrometry for human biomonitoring: An analytical primer to studying the environmental chemical space of the human exposome. Environ Int, 2017. 100: p. 32–61.

    Google Scholar 

  21. Gao, P., et al., Precision environmental health monitoring by longitudinal exposome and multi-omics profiling. Genome Res, 2022. 32(6): p. 1199–1214.

    Google Scholar 

  22. Jiang, C., et al., Dynamic Human Environmental Exposome Revealed by Longitudinal Personal Monitoring. Cell, 2018. 175(1): p. 277–291 e31.

    Google Scholar 

  23. Jiang, C., et al., Decoding personal biotic and abiotic airborne exposome. Nat Protoc, 2021. 16(2): p. 1129–1151.

    Google Scholar 

  24. Arivale. 2019; Available from: http://www.arivale.com/.

  25. Bishop, T. and J. Thorne. Why Arivale failed: Inside the surprise closure of an ambitious ‘scientific wellness’ startup. 2019 [cited 2022; Available from: https://www.geekwire.com/2019/arivale-shut-doors-inside-surprise-closure-ambitious-scientific-wellness-startup/.

  26. Paquette, D. Molecular You Signs Agreement for Roche to Use its Molecular Profiling Technology. 2021 [cited 2022; Available from: https://www.biospace.com/article/molecular-you-signs-agreement-for-roche-to-use-its-molecular-profiling-technology/.

  27. Phillips, K.A., et al., Genetic Test Availability And Spending: Where Are We Now? Where Are We Going? Health Aff (Millwood), 2018. 37(5): p. 710–716.

    Google Scholar 

  28. Pinu, F.R., S.A. Goldansaz, and J. Jaine, Translational Metabolomics: Current Challenges and Future Opportunities. Metabolites, 2019. 9(6).

    Google Scholar 

  29. Trifonova, O.P., et al., Current State and Future Perspectives on Personalized Metabolomics. Metabolites, 2023. 13(1).

    Google Scholar 

  30. Spratlin, J.L., N.J. Serkova, and S.G. Eckhardt, Clinical applications of metabolomics in oncology: a review. Clin Cancer Res, 2009. 15(2): p. 431–40.

    Google Scholar 

  31. Turkoglu, O., et al., Metabolomics of biomarker discovery in ovarian cancer: a systematic review of the current literature. Metabolomics, 2016. 12(4).

    Google Scholar 

  32. Yu, L., K. Li, and X. Zhang, Next-generation metabolomics in lung cancer diagnosis, treatment and precision medicine: mini review. Oncotarget, 2017. 8(70): p. 115774–115786.

    Google Scholar 

  33. Troisi, J., et al., Metabolomic Signature of Endometrial Cancer. J Proteome Res, 2018. 17(2): p. 804–812.

    Google Scholar 

  34. Bathen, T.F., et al., Feasibility of MR metabolomics for immediate analysis of resection margins during breast cancer surgery. PLoS One, 2013. 8(4): p. e61578.

    Google Scholar 

  35. Glunde, K., et al., Choline metabolism-based molecular diagnosis of cancer: an update. Expert Rev Mol Diagn, 2015. 15(6): p. 735–47.

    Google Scholar 

  36. Ashrafian, H., et al., Metabolomics: The Stethoscope for the Twenty-First Century. Med Princ Pract, 2021. 30(4): p. 301–310.

    Google Scholar 

  37. Wang, T.J., et al., 2-Aminoadipic acid is a biomarker for diabetes risk. J Clin Invest, 2013. 123(10): p. 4309–17.

    Google Scholar 

  38. Kim, S., et al., Global metabolite profiling of synovial fluid for the specific diagnosis of rheumatoid arthritis from other inflammatory arthritis. PLoS One, 2014. 9(6): p. e97501.

    Google Scholar 

  39. van der Lee, S.J., et al., Circulating metabolites and general cognitive ability and dementia: Evidence from 11 cohort studies. Alzheimers Dement, 2018. 14(6): p. 707–722.

    Google Scholar 

  40. Han, W., et al., Profiling novel metabolic biomarkers for Parkinson's disease using in-depth metabolomic analysis. Mov Disord, 2017. 32(12): p. 1720–1728.

    Google Scholar 

  41. Licari, A., et al., Asthma Endotyping and Biomarkers in Childhood Asthma. Pediatr Allergy Immunol Pulmonol, 2018. 31(2): p. 44–55.

    Google Scholar 

  42. Wurtz, P., et al., High-throughput quantification of circulating metabolites improves prediction of subclinical atherosclerosis. Eur Heart J, 2012. 33(18): p. 2307–16.

    Google Scholar 

  43. Vallejo, M., et al., Plasma fingerprinting with GC-MS in acute coronary syndrome. Anal Bioanal Chem, 2009. 394(6): p. 1517–24.

    Google Scholar 

  44. Dunn, W.B., Broadhurst, D.I., Deepak, S.M. et al., Serum metabolomics reveals many novel metabolic markers of heart failure, including pseudouridine and 2-oxoglutarate. Metabolomics 2007. 3: p. 413–426.

    Google Scholar 

  45. Zhang, S., et al., Predicting detection limits of enzyme-linked immunosorbent assay (ELISA) and bioanalytical techniques in general. Analyst, 2014. 139(2): p. 439–45.

    Google Scholar 

  46. Gibney, M.J., et al., Metabolomics in human nutrition: opportunities and challenges. Am J Clin Nutr, 2005. 82(3): p. 497–503.

    Google Scholar 

  47. Wishart, D.S., Emerging applications of metabolomics in drug discovery and precision medicine. Nat Rev Drug Discov, 2016. 15(7): p. 473–84.

    Google Scholar 

  48. Di Minno, A., et al., Challenges in Metabolomics-Based Tests, Biomarkers Revealed by Metabolomic Analysis, and the Promise of the Application of Metabolomics in Precision Medicine. Int J Mol Sci, 2022. 23(9).

    Google Scholar 

  49. Mastrangelo, A., et al., Metabolomics as a tool for drug discovery and personalised medicine. A review. Curr Top Med Chem, 2014. 14(23): p. 2627–36.

    Google Scholar 

  50. Nicholson, J.K., et al., Metabonomics: a platform for studying drug toxicity and gene function. Nat Rev Drug Discov, 2002. 1(2): p. 153–61.

    Google Scholar 

  51. Sengupta, A., A. Uppoor, and M.B. Joshi, Metabolomics: Paving the path for personalized periodontics – A literature review. J Indian Soc Periodontol, 2022. 26(2): p. 98–103.

    Google Scholar 

  52. D'Adamo, G.L., J.T. Widdop, and E.M. Giles, The future is now? Clinical and translational aspects of "Omics" technologies. Immunol Cell Biol, 2021. 99(2): p. 168–176.

    Google Scholar 

  53. Dawiskiba, T., et al., Serum and urine metabolomic fingerprinting in diagnostics of inflammatory bowel diseases. World J Gastroenterol, 2014. 20(1): p. 163–74.

    Google Scholar 

  54. Williams, H.R., et al., Serum metabolic profiling in inflammatory bowel disease. Dig Dis Sci, 2012. 57(8): p. 2157–65.

    Google Scholar 

  55. da Silva, R.R., P.C. Dorrestein, and R.A. Quinn, Illuminating the dark matter in metabolomics. Proc Natl Acad Sci U S A, 2015. 112(41): p. 12549–50.

    Google Scholar 

  56. Roberts, L.D., et al., Targeted metabolomics. Curr Protoc Mol Biol, 2012. Chapter 30: p. Unit 30 2 1–24.

    Google Scholar 

  57. Patti, G.J., O. Yanes, and G. Siuzdak, Innovation: Metabolomics: the apogee of the omics trilogy. Nat Rev Mol Cell Biol, 2012. 13(4): p. 263–9.

    Google Scholar 

  58. Dunn, W.B., et al., Systems level studies of mammalian metabolomes: the roles of mass spectrometry and nuclear magnetic resonance spectroscopy. Chem Soc Rev, 2011. 40(1): p. 387–426.

    Google Scholar 

  59. Zhang, X., et al., Non-targeted and targeted metabolomics approaches to diagnosing lung cancer and predicting patient prognosis. Oncotarget, 2016. 7(39): p. 63437–63448.

    Google Scholar 

  60. Castelli, F.A., et al., Metabolomics for personalized medicine: the input of analytical chemistry from biomarker discovery to point-of-care tests. Anal Bioanal Chem, 2022. 414(2): p. 759–789.

    Google Scholar 

  61. Yang, Q., et al., Metabolomics biotechnology, applications, and future trends: a systematic review. RSC Adv, 2019. 9(64): p. 37245–37257.

    Google Scholar 

  62. Dumas, T., et al., Environmental Metabolomics Promises and Achievements in the Field of Aquatic Ecotoxicology: Viewed through the Pharmaceutical Lens. Metabolites, 2022. 12(2).

    Google Scholar 

  63. Wu, W., et al., Emerging applications of metabolomics in food science and future trends. Food Chem X, 2022. 16: p. 100500.

    Google Scholar 

  64. Sakurai, N., Recent applications of metabolomics in plant breeding. Breed Sci, 2022. 72(1): p. 56–65.

    Google Scholar 

  65. Tang, Z.Z., et al., Multi-Omic Analysis of the Microbiome and Metabolome in Healthy Subjects Reveals Microbiome-Dependent Relationships Between Diet and Metabolites. Front Genet, 2019. 10: p. 454.

    Google Scholar 

  66. Nguyen, Q.P., et al., Associations between the gut microbiome and metabolome in early life. BMC Microbiol, 2021. 21(1): p. 238.

    Google Scholar 

  67. Bauermeister, A., et al., Mass spectrometry-based metabolomics in microbiome investigations. Nat Rev Microbiol, 2022. 20(3): p. 143–160.

    Google Scholar 

  68. Lee-Sarwar, K.A., et al., Metabolome-Microbiome Crosstalk and Human Disease. Metabolites, 2020. 10(5).

    Google Scholar 

  69. Tran, H., M. McConville, and P. Loukopoulos, Metabolomics in the study of spontaneous animal diseases. J Vet Diagn Invest, 2020. 32(5): p. 635–647.

    Google Scholar 

  70. Goldansaz, S.A., et al., Livestock metabolomics and the livestock metabolome: A systematic review. PLoS One, 2017. 12(5): p. e0177675.

    Google Scholar 

  71. Zhang, G., et al., A Multi-Platform Metabolomics Approach Identifies Urinary Metabolite Signatures That Differentiate Ketotic From Healthy Dairy Cows. Front Vet Sci, 2021. 8: p. 595983.

    Google Scholar 

  72. Ramirez, T., et al., Metabolomics in toxicology and preclinical research. ALTEX, 2013. 30(2): p. 209–25.

    Google Scholar 

  73. Playdon, M.C., et al., Metabolomics Analytics Workflow for Epidemiological Research: Perspectives from the Consortium of Metabolomics Studies (COMETS). Metabolites, 2019. 9(7).

    Google Scholar 

  74. Dougan, M.M., et al., Metabolomic profiles in breast cancer: a pilot case-control study in the breast cancer family registry. BMC Cancer, 2018. 18(1): p. 532.

    Google Scholar 

  75. De Preter, V. and K. Verbeke, Metabolomics as a diagnostic tool in gastroenterology. World J Gastrointest Pharmacol Ther, 2013. 4(4): p. 97–107.

    Google Scholar 

  76. McGarrah, R.W., et al., Cardiovascular Metabolomics. Circ Res, 2018. 122(9): p. 1238–1258.

    Google Scholar 

  77. Han, L., et al., Altered metabolome and microbiome features provide clues in understanding irritable bowel syndrome and depression comorbidity. ISME J, 2022. 16(4): p. 983–996.

    Google Scholar 

  78. Vernocchi, P., F. Del Chierico, and L. Putignani, Gut Microbiota Profiling: Metabolomics Based Approach to Unravel Compounds Affecting Human Health. Front Microbiol, 2016. 7: p. 1144.

    Google Scholar 

  79. Zhao, Z., et al., Application of metabolomics in osteoporosis research. Front Endocrinol (Lausanne), 2022. 13: p. 993253.

    Google Scholar 

  80. Adav, S.S. and Y. Wang, Metabolomics Signatures of Aging: Recent Advances. Aging Dis, 2021. 12(2): p. 646–661.

    Google Scholar 

  81. Wendt, C.H., et al., Metabolite profiles associated with disease progression in influenza infection. PLoS One, 2021. 16(4): p. e0247493.

    Google Scholar 

  82. McCreath, G., et al., A Metabolomics approach for the diagnosis Of SecondAry InfeCtions in COVID-19 (MOSAIC): a study protocol. BMC Infect Dis, 2021. 21(1): p. 1204.

    Google Scholar 

  83. Ulaszewska, M.M., et al., Nutrimetabolomics: An Integrative Action for Metabolomic Analyses in Human Nutritional Studies. Mol Nutr Food Res, 2019. 63(1): p. e1800384.

    Google Scholar 

  84. Reisdorph, N.A., et al., Nutrimetabolomics reveals food-specific compounds in urine of adults consuming a DASH-style diet. Sci Rep, 2020. 10(1): p. 1157.

    Google Scholar 

  85. Rangel-Huerta, O.D. and A. Gil, Nutrimetabolomics: An Update on Analytical Approaches to Investigate the Role of Plant-Based Foods and Their Bioactive Compounds in Non-Communicable Chronic Diseases. Int J Mol Sci, 2016. 17(12).

    Google Scholar 

  86. Mathur, S. and J. Sutton, Personalized medicine could transform healthcare. Biomed Rep, 2017. 7(1): p. 3–5.

    Google Scholar 

  87. Hood, L. and M. Flores, A personal view on systems medicine and the emergence of proactive P4 medicine: predictive, preventive, personalized and participatory. N Biotechnol, 2012. 29(6): p. 613–24.

    Google Scholar 

  88. Ginsburg, G.S. and K.A. Phillips, Precision Medicine: From Science To Value. Health Aff (Millwood), 2018. 37(5): p. 694–701.

    Google Scholar 

  89. Kaddurah-Daouk, R., R. Weinshilboum, and N. Pharmacometabolomics Research, Metabolomic Signatures for Drug Response Phenotypes: Pharmacometabolomics Enables Precision Medicine. Clin Pharmacol Ther, 2015. 98(1): p. 71–5.

    Google Scholar 

  90. Hesse, J., et al., Profound inhibition of CD73-dependent formation of anti-inflammatory adenosine in B cells of SLE patients. EBioMedicine, 2021. 73: p. 103616.

    Google Scholar 

  91. Lin, X., et al., Metabolic biomarker signature for predicting the effect of neoadjuvant chemotherapy of breast cancer. Ann Transl Med, 2019. 7(22): p. 670.

    Google Scholar 

  92. Ye, Z., et al., A 13-Gene Metabolic Prognostic Signature Is Associated With Clinical and Immune Features in Stomach Adenocarcinoma. Front Oncol, 2021. 11: p. 612952.

    Google Scholar 

  93. Yousf, S., et al., Metabolic signatures suggest o-phosphocholine to UDP-N-acetylglucosamine ratio as a potential biomarker for high-glucose and/or palmitate exposure in pancreatic beta-cells. Metabolomics, 2019. 15(4): p. 55.

    Google Scholar 

  94. Kaddurah-Daouk, R., et al., Pretreatment metabotype as a predictor of response to sertraline or placebo in depressed outpatients: a proof of concept. Transl Psychiatry, 2011. 1(7): p. e26–.

    Google Scholar 

  95. Zhu, H., et al., Pharmacometabolomics of response to sertraline and to placebo in major depressive disorder – possible role for methoxyindole pathway. PLoS One, 2013. 8(7): p. e68283.

    Google Scholar 

  96. Kaddurah-Daouk, R., et al., Pharmacometabolomic mapping of early biochemical changes induced by sertraline and placebo. Transl Psychiatry, 2013. 3(1): p. e223.

    Google Scholar 

  97. Yao, J.K., et al., Associations between purine metabolites and clinical symptoms in schizophrenia. PLoS One, 2012. 7(8): p. e42165.

    Google Scholar 

  98. Yerges-Armstrong, L.M., et al., Purine pathway implicated in mechanism of resistance to aspirin therapy: pharmacometabolomics-informed pharmacogenomics. Clin Pharmacol Ther, 2013. 94(4): p. 525–32.

    Google Scholar 

  99. Abo, R., et al., Merging pharmacometabolomics with pharmacogenomics using '1000 Genomes' single-nucleotide polymorphism imputation: selective serotonin reuptake inhibitor response pharmacogenomics. Pharmacogenet Genomics, 2012. 22(4): p. 247–53.

    Google Scholar 

  100. Ji, Y., et al., Glycine and a glycine dehydrogenase (GLDC) SNP as citalopram/escitalopram response biomarkers in depression: pharmacometabolomics-informed pharmacogenomics. Clin Pharmacol Ther, 2011. 89(1): p. 97–104.

    Google Scholar 

  101. Perroud, B., et al., Pharmacometabolomic signature of ataxia SCA1 mouse model and lithium effects. PLoS One, 2013. 8(8): p. e70610.

    Google Scholar 

  102. Lewis, J.P., et al., Integration of pharmacometabolomic and pharmacogenomic approaches reveals novel insights into antiplatelet therapy. Clin Pharmacol Ther, 2013. 94(5): p. 570–3.

    Google Scholar 

  103. Trupp, M., et al., Metabolomics reveals amino acids contribute to variation in response to simvastatin treatment. PLoS One, 2012. 7(7): p. e38386.

    Google Scholar 

  104. Kaddurah-Daouk, R., et al., Metabolomic mapping of atypical antipsychotic effects in schizophrenia. Mol Psychiatry, 2007. 12(10): p. 934–45.

    Google Scholar 

  105. McEvoy, J., et al., Lipidomics reveals early metabolic changes in subjects with schizophrenia: effects of atypical antipsychotics. PLoS One, 2013. 8(7): p. e68717.

    Google Scholar 

  106. Ellero-Simatos, S., et al., Pharmacometabolomics reveals that serotonin is implicated in aspirin response variability. CPT Pharmacometrics Syst Pharmacol, 2014. 3(7): p. e125.

    Google Scholar 

  107. Cooper-Dehoff, R.M., et al., Is diabetes mellitus-linked amino acid signature associated with beta-blocker-induced impaired fasting glucose? Circ Cardiovasc Genet, 2014. 7(2): p. 199–205.

    Google Scholar 

  108. Wikoff, W.R., et al., Pharmacometabolomics reveals racial differences in response to atenolol treatment. PLoS One, 2013. 8(3): p. e57639.

    Google Scholar 

  109. Kaddurah-Daouk, R., et al., Lipidomic analysis of variation in response to simvastatin in the Cholesterol and Pharmacogenetics Study. Metabolomics, 2010. 6(2): p. 191–201.

    Google Scholar 

  110. Li, H. and W. Jia, Cometabolism of microbes and host: implications for drug metabolism and drug-induced toxicity. Clin Pharmacol Ther, 2013. 94(5): p. 574–81.

    Google Scholar 

  111. Ji, Y., et al., Pharmacogenomics of selective serotonin reuptake inhibitor treatment for major depressive disorder: genome-wide associations and functional genomics. Pharmacogenomics J, 2013. 13(5): p. 456–63.

    Google Scholar 

  112. Ji, Y., et al., Citalopram and escitalopram plasma drug and metabolite concentrations: genome-wide associations. Br J Clin Pharmacol, 2014. 78(2): p. 373–83.

    Google Scholar 

  113. Gupta, M., et al., TSPAN5, ERICH3 and selective serotonin reuptake inhibitors in major depressive disorder: pharmacometabolomics-informed pharmacogenomics. Mol Psychiatry, 2016. 21(12): p. 1717–1725.

    Google Scholar 

  114. Mitchell, B.D., et al., The genetic response to short-term interventions affecting cardiovascular function: rationale and design of the Heredity and Phenotype Intervention (HAPI) Heart Study. Am Heart J, 2008. 155(5): p. 823–8.

    Google Scholar 

  115. Neavin, D., R. Kaddurah-Daouk, and R. Weinshilboum, Pharmacometabolomics informs Pharmacogenomics. Metabolomics, 2016. 12(7).

    Google Scholar 

  116. Clayton, T.A., et al., Pharmaco-metabonomic phenotyping and personalized drug treatment. Nature, 2006. 440(7087): p. 1073–7.

    Google Scholar 

  117. Beger, R.D., et al., Metabolomics enables precision medicine: "A White Paper, Community Perspective". Metabolomics, 2016. 12(10): p. 149.

    Google Scholar 

  118. Guo, L., et al., Plasma metabolomic profiles enhance precision medicine for volunteers of normal health. Proc Natl Acad Sci U S A, 2015. 112(35): p. E4901–10.

    Google Scholar 

  119. Leil, T.A. and R. Bertz, Quantitative Systems Pharmacology can reduce attrition and improve productivity in pharmaceutical research and development. Front Pharmacol, 2014. 5: p. 247.

    Google Scholar 

  120. Martorell-Marugan, J., et al., Deep Learning in Omics Data Analysis and Precision Medicine, in Computational Biology, H. Husi, Editor. 2019: Brisbane (AU).

    Google Scholar 

  121. Sammut, S.J., et al., Multi-omic machine learning predictor of breast cancer therapy response. Nature, 2022. 601(7894): p. 623–629.

    Google Scholar 

  122. Reel, P.S., et al., Using machine learning approaches for multi-omics data analysis: A review. Biotechnol Adv, 2021. 49: p. 107739.

    Google Scholar 

  123. Tercan, B., & Leblebici, A, Data Resources and Machine Learning for Transcriptomics Data Analysis. Current Studies in Basic Sciences, Engineering and Technology, 2021: p. 70–85.

    Google Scholar 

  124. Félix Raimundo, L.M.-P., Céline Vallot, Jean-Philippe Vert, Machine learning for single-cell genomics data analysis. 2021. 26: p. 64–71.

    Google Scholar 

  125. Pomyen, Y., et al., Deep metabolome: Applications of deep learning in metabolomics. Comput Struct Biotechnol J, 2020. 18: p. 2818–2825.

    Google Scholar 

  126. Matyushin, D.D., A.Y. Sholokhova, and A.K. Buryak, Deep Learning Driven GC-MS Library Search and Its Application for Metabolomics. Anal Chem, 2020. 92(17): p. 11818–11825.

    Google Scholar 

  127. Liebal, U.W., et al., Machine Learning Applications for Mass Spectrometry-Based Metabolomics. Metabolites, 2020. 10(6).

    Google Scholar 

  128. Kantz, E.D., et al., Deep Neural Networks for Classification of LC-MS Spectral Peaks. Anal Chem, 2019. 91(19): p. 12407–12413.

    Google Scholar 

  129. Petrick, L.M. and N. Shomron, AI/ML-driven advances in untargeted metabolomics and exposomics for biomedical applications. Cell Rep Phys Sci, 2022. 3(7).

    Google Scholar 

  130. Sotnezova, K.M., Samokhin, A.S. & Revelsky, I.A., Use of PLS Discriminant Analysis for Revealing the Absence of a Compound in an Electron Ionization Mass Spectral Database. Anal Chem, 2017.

    Google Scholar 

  131. Samokhin, A., K. Sotnezova, and I. Revelsky, Predicting the absence of an unknown compound in a mass spectral database. Eur J Mass Spectrom (Chichester), 2019. 25(6): p. 439–444.

    Google Scholar 

  132. Wang, D., P. Greenwood, and M.S. Klein, Deep Learning for Rapid Identification of Microbes Using Metabolomics Profiles. Metabolites, 2021. 11(12).

    Google Scholar 

  133. Asakura, T., Y. Date, and J. Kikuchi, Application of ensemble deep neural network to metabolomics studies. Anal Chim Acta, 2018. 1037: p. 230–236.

    Google Scholar 

  134. Alakwaa, F.M., K. Chaudhary, and L.X. Garmire, Deep Learning Accurately Predicts Estrogen Receptor Status in Breast Cancer Metabolomics Data. J Proteome Res, 2018. 17(1): p. 337–347.

    Google Scholar 

  135. Hu, X., et al., Combining metabolome and clinical indicators with machine learning provides some promising diagnostic markers to precisely detect smear-positive/negative pulmonary tuberculosis. BMC Infect Dis, 2022. 22(1): p. 707.

    Google Scholar 

  136. Bahado-Singh, R.O., et al., Artificial intelligence and amniotic fluid multiomics: prediction of perinatal outcome in asymptomatic women with short cervix. Ultrasound Obstet Gynecol, 2019. 54(1): p. 110–118.

    Google Scholar 

  137. Troisi, J., et al., A Metabolomics-Based Screening Proposal for Colorectal Cancer. Metabolites, 2022. 12(2).

    Google Scholar 

  138. Hogan, C.A., et al., Nasopharyngeal metabolomics and machine learning approach for the diagnosis of influenza. EBioMedicine, 2021. 71: p. 103546.

    Google Scholar 

  139. Prade, V.M., et al., The synergism of spatial metabolomics and morphometry improves machine learning-based renal tumour subtype classification. Clin Transl Med, 2022. 12(2): p. e666.

    Google Scholar 

  140. Cao, J., et al., Combined metabolomics and machine learning algorithms to explore metabolic biomarkers for diagnosis of acute myocardial ischemia. Int J Legal Med, 2022.

    Google Scholar 

  141. Niu, J., et al., Joint deep learning for batch effect removal and classification toward MALDI MS based metabolomics. BMC Bioinformatics, 2022. 23(1): p. 270.

    Google Scholar 

  142. Oh, T.G., et al., A Universal Gut-Microbiome-Derived Signature Predicts Cirrhosis. Cell Metab, 2020. 32(5): p. 878–888 e6.

    Google Scholar 

  143. Shen, B.e.a., Proteomic and Metabolomic Characterization of COVID-19 Patient Sera. Cell, 2020. 182: p. 59–72.

    Google Scholar 

  144. Takahashi, Y., et al., Improved metabolomic data-based prediction of depressive symptoms using nonlinear machine learning with feature selection. Transl Psychiatry, 2020. 10(1): p. 157.

    Google Scholar 

  145. Taylor, M.J., J.K. Lukowski, and C.R. Anderton, Spatially Resolved Mass Spectrometry at the Single Cell: Recent Innovations in Proteomics and Metabolomics. J Am Soc Mass Spectrom, 2021. 32(4): p. 872–894.

    Google Scholar 

  146. Pelkmans, L., Cell Biology. Using cell-to-cell variability--a new era in molecular biology. Science, 2012. 336(6080): p. 425–6.

    Google Scholar 

  147. Lee, M.C., et al., Single-cell analyses of transcriptional heterogeneity during drug tolerance transition in cancer cells by RNA sequencing. Proc Natl Acad Sci U S A, 2014. 111(44): p. E4726–35.

    Google Scholar 

  148. Russell, A.B., C. Trapnell, and J.D. Bloom, Extreme heterogeneity of influenza virus infection in single cells. Elife, 2018. 7.

    Google Scholar 

  149. Altschuler, S.J. and L.F. Wu, Cellular heterogeneity: do differences make a difference? Cell, 2010. 141(4): p. 559–63.

    Google Scholar 

  150. Lanekoff, I., V.V. Sharma, and C. Marques, Single-cell metabolomics: where are we and where are we going? Curr Opin Biotechnol, 2022. 75: p. 102693.

    Google Scholar 

  151. Hansen, R.L. and Y.J. Lee, High-Spatial Resolution Mass Spectrometry Imaging: Toward Single Cell Metabolomics in Plant Tissues. The Chemical Record, 2018. 18(1): p. 65–77.

    Google Scholar 

  152. Rappez, L., et al., SpaceM reveals metabolic states of single cells. Nat Methods, 2021. 18(7): p. 799–805.

    Google Scholar 

  153. Kumar, R., et al., Single Cell Metabolomics: A Future Tool to Unmask Cellular Heterogeneity and Virus-Host Interaction in Context of Emerging Viral Diseases. Front Microbiol, 2020. 11: p. 1152.

    Google Scholar 

  154. Mas, S., et al., Cluster TOF-SIMS imaging: a new light for in situ metabolomics? Proteomics, 2008. 8(18): p. 3735–45.

    Google Scholar 

  155. Behrens, S., A. Kappler, and M. Obst, Linking environmental processes to the in situ functioning of microorganisms by high-resolution secondary ion mass spectrometry (NanoSIMS) and scanning transmission X-ray microscopy (STXM). Environ Microbiol, 2012. 14(11): p. 2851–69.

    Google Scholar 

  156. Aichler, M. and A. Walch, MALDI Imaging mass spectrometry: current frontiers and perspectives in pathology research and practice. Lab Invest, 2015. 95(4): p. 422–31.

    Google Scholar 

  157. Norris, J.L. and R.M. Caprioli, Analysis of tissue specimens by matrix-assisted laser desorption/ionization imaging mass spectrometry in biological and clinical research. Chem Rev, 2013. 113(4): p. 2309–42.

    Google Scholar 

  158. Soltwisch, J., et al., Mass spectrometry imaging with laser-induced postionization. Science, 2015. 348(6231): p. 211–5.

    Google Scholar 

  159. Shrestha, B. and A. Vertes, In situ metabolic profiling of single cells by laser ablation electrospray ionization mass spectrometry. Anal Chem, 2009. 81(20): p. 8265-71.

    Google Scholar 

  160. Taylor, M.J., et al., Ambient Single-Cell Analysis and Native Tissue Imaging Using Laser-Ablation Electrospray Ionization Mass Spectrometry with Increased Spatial Resolution. J Am Soc Mass Spectrom, 2021. 32(9): p. 2490–2494.

    Google Scholar 

  161. Arentz, G., et al., Applications of Mass Spectrometry Imaging to Cancer. Adv Cancer Res, 2017. 134: p. 27–66.

    Google Scholar 

  162. Roach, P.J., J. Laskin, and A. Laskin, Nanospray desorption electrospray ionization: an ambient method for liquid-extraction surface sampling in mass spectrometry. Analyst, 2010. 135(9): p. 2233–6.

    Google Scholar 

  163. Kim, J. and R.J. DeBerardinis, Mechanisms and Implications of Metabolic Heterogeneity in Cancer. Cell Metab, 2019. 30(3): p. 434–446.

    Google Scholar 

  164. Lau, A.N., et al., Dissecting cell-type-specific metabolism in pancreatic ductal adenocarcinoma. Elife, 2020. 9.

    Google Scholar 

  165. Tsuyama, N., et al., Live single-cell molecular analysis by video-mass spectrometry. Anal Sci, 2008. 24(5): p. 559–61.

    Google Scholar 

  166. Wilson, A.D., Application of Electronic-Nose Technologies and VOC-Biomarkers for the Noninvasive Early Diagnosis of Gastrointestinal Diseases (dagger). Sensors (Basel), 2018. 18(8).

    Google Scholar 

  167. Patrick A. Gladding, R.Y., Maxine Cooper, Suzanne Loader, Kevin Smith, Erica Zarate, Saras Green, Silas G. Villas-Boas, Phillip Shepherd, Purvi Kakadiya, Eric Thorstensen, Christine Keven, Margaret Coe, Mia Jüllig, Edmond Zhang, Todd T. Schlegel, Metabolomics and a Breath Sensor Identify Acetone as a Biomarker for Heart Failure. 2021.

    Google Scholar 

  168. Panebianco, C., et al., Cancer sniffer dogs: how can we translate this peculiarity in laboratory medicine? Results of a pilot study on gastrointestinal cancers. Clin Chem Lab Med, 2017. 56(1): p. 138–146.

    Google Scholar 

  169. Gao, W., G.A. Brooks, and D.C. Klonoff, Wearable physiological systems and technologies for metabolic monitoring. J Appl Physiol (1985), 2018. 124(3): p. 548–556.

    Google Scholar 

  170. Potts, R.O., J.A. Tamada, and M.J. Tierney, Glucose monitoring by reverse iontophoresis. Diabetes Metab Res Rev, 2002. 18 Suppl 1: p. S49–53.

    Google Scholar 

  171. Mannoor, M.S., et al., Graphene-based wireless bacteria detection on tooth enamel. Nat Commun, 2012. 3: p. 763.

    Google Scholar 

  172. Kim, J., et al., Non-invasive mouthguard biosensor for continuous salivary monitoring of metabolites. Analyst, 2014. 139(7): p. 1632–6.

    Google Scholar 

  173. Kim, J., et al., Wearable salivary uric acid mouthguard biosensor with integrated wireless electronics. Biosens Bioelectron, 2015. 74: p. 1061–8.

    Google Scholar 

  174. DiaTribe. Google Secures Patent for Glucose-Sensing Contact Lens. 2015; Available from: https://diatribe.org/google-secures-patent-glucose-sensing-contact-lens.

  175. Heinemann, J., et al., Analysis of Raw Biofluids by Mass Spectrometry Using Microfluidic Diffusion-Based Separation. Anal Methods, 2017. 9(3): p. 385–392.

    Google Scholar 

  176. 2021; Available from: https://www.auggi.ai/.

  177. Lapizco-Encinas, B.H. and Y.V. Zhang, Microfluidic systems in clinical diagnosis. Electrophoresis, 2022.

    Google Scholar 

  178. Jacobs, D.M., M.A. van den Berg, and R.D. Hall, Towards superior plant-based foods using metabolomics. Curr Opin Biotechnol, 2021. 70: p. 23–28.

    Google Scholar 

  179. Liu, Y., et al., Quantitative variability of 342 plasma proteins in a human twin population. Mol Syst Biol, 2015. 11(1): p. 786.

    Google Scholar 

  180. Bermingham, K.M., et al., Genetic and Environmental Contributions to Variation in the Stable Urinary NMR Metabolome over Time: A Classic Twin Study. J Proteome Res, 2021. 20(8): p. 3992–4000.

    Google Scholar 

  181. Liu, N., et al., Comparison of Untargeted Metabolomic Profiling vs Traditional Metabolic Screening to Identify Inborn Errors of Metabolism. JAMA Netw Open, 2021. 4(7): p. e2114155.

    Google Scholar 

  182. Gertsman, I. and B.A. Barshop, Promises and pitfalls of untargeted metabolomics. J Inherit Metab Dis, 2018. 41(3): p. 355–366.

    Google Scholar 

  183. Barron, R., et al., Twin metabolomics: the key to unlocking complex phenotypes in nutrition research. Nutr Res, 2016. 36(4): p. 291–304.

    Google Scholar 

  184. Fessenden, M., Metabolomics: Small molecules, single cells. Nature, 2016. 540(7631): p. 153–155.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vijay Soni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Soni, V., Bartelo, N., Schweickart, A., Chawla, Y., Dutta, A., Jain, S. (2023). Future Perspectives of Metabolomics: Gaps, Planning, and Recommendations. In: Soni, V., Hartman, T.E. (eds) Metabolomics. Springer, Cham. https://doi.org/10.1007/978-3-031-39094-4_14

Download citation

Publish with us

Policies and ethics