Skip to main content

Spatial Frequency Domain Imaging

  • Chapter
  • First Online:
Coded Optical Imaging

Abstract

In this chapter, we will cover the principles of operation of spatial frequency domain imaging techniques and how this modality has been applied to the non-invasive quantification of tissue properties. This is a diffuse reflectance technique that can separate and quantify the optical properties of turbid media, such as tissue (i.e., absorption and reduced scattering coefficients), and then interpret these properties in terms of function through absorption (e.g., hemoglobin concentration and oxygenation, water fraction, etc.) and structure through scattering. Several design considerations and implementations will be discussed that employ SFDI techniques to target spatial characteristics, temporal dynamics, and spectral analysis of tissue, based on current hardware and technologies available.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wriedt, T., Mie theory: a review. The Mie theory: Basics and applications, 2012: p. 53–71.

    Google Scholar 

  2. Mourant, J.R., et al., Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics. Applied Optics, 1998. 37(16): p. 3586–3593.

    Google Scholar 

  3. Kienle, A. and M.S. Patterson, Determination of the optical properties of turbid media from a single Monte Carlo simulation. Physics in Medicine and Biology, 1996. 41(10): p. 2221–2227.

    Google Scholar 

  4. Ishimaru, A., Wave propagation and scattering in random media. 1978, New York: Academic Press.

    Google Scholar 

  5. Kim, A.D., Transport theory for light propagation in biological tissue. J Opt Soc Am A Opt Image Sci Vis, 2004. 21(5): p. 820–7.

    Google Scholar 

  6. Dognitz, N. and G. Wagnieres, Determination of tissue optical properties by steady-state spatial frequency-domain reflectometry. Lasers in Medical Science, 1998. 13(1): p. 55–65.

    Google Scholar 

  7. Cuccia, D.J., et al., Quantitation and mapping of tissue optical properties using modulated imaging. J Biomed Opt, 2009. 14(2): p. 024012.

    Google Scholar 

  8. Li, X.D., et al., Diffraction tomography for biochemical imaging with diffuse-photon density waves. Optics Letters, 1997. 22(8): p. 573–575.

    Google Scholar 

  9. Kienle, A., et al., Noninvasive determination of the optical properties of two-layered turbid media. Applied Optics, 1998. 37(4): p. 779–791.

    Google Scholar 

  10. Markel, V.A. and J.C. Schotland, Inverse problem in optical diffusion tomography. I. Fourier-Laplace inversion formulas. Journal of the Optical Society of America a-Optics Image Science and Vision, 2001. 18(6): p. 1336–1347.

    Google Scholar 

  11. Post, A.L., D.J. Faber, and T.G. van Leeuwen, Model for the diffuse reflectance in spatial frequency domain imaging. J Biomed Opt, 2023. 28(4): p. 046002.

    Google Scholar 

  12. Wang, L.H., S.L. Jacques, and L.Q. Zheng, Mcml – Monte-Carlo Modeling of Light Transport in Multilayered Tissues. Computer Methods and Programs in Biomedicine, 1995. 47(2): p. 131–146.

    Google Scholar 

  13. Swartling, J., et al., Accelerated Monte Carlo models to simulate fluorescence spectra from layered tissues. Journal of the Optical Society of America a-Optics Image Science and Vision, 2003. 20(4): p. 714–727.

    Google Scholar 

  14. Rajaram, N., T.H. Nguyen, and J.W. Tunnell, Lookup table-based inverse model for determining optical properties of turbid media. Journal of Biomedical Optics, 2008. 13(5).

    Google Scholar 

  15. Sun, Z.Z., et al., An artificial neural network model for accurate and efficient optical property mapping from spatial-frequency domain images. Computers and Electronics in Agriculture, 2021. 188.

    Google Scholar 

  16. Zhao, Y.Y., et al., Deep learning model for ultrafast multifrequency optical property extractions for spatial frequency domain imaging. Optics Letters, 2018. 43(22): p. 5669–5672.

    Google Scholar 

  17. Yudovsky, D. and A.J. Durkin, Spatial frequency domain spectroscopy of two layer media. Journal of Biomedical Optics, 2011. 16(10).

    Google Scholar 

  18. Rowland, R., et al., Burn wound classification model using spatial frequency-domain imaging and machine learning. Journal of Biomedical Optics, 2019. 24(5).

    Google Scholar 

  19. Pogue, B.W. and M.S. Patterson, Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry. Journal of Biomedical Optics, 2006. 11(4).

    Google Scholar 

  20. Ayers, F., et al., Fabrication and characterization of silicone-based tissue phantoms with tunable optical properties in the visible and near infrared domain. Design and Performance Validation of Phantoms Used in Conjunction with Optical Measurements of Tissue, 2008. 6870.

    Google Scholar 

  21. Gioux, S., et al., Three-dimensional surface profile intensity correction for spatially modulated imaging. Journal of Biomedical Optics, 2009. 14(3).

    Google Scholar 

  22. Zhao, Y., et al., Angle correction for small animal tumor imaging with spatial frequency domain imaging (SFDI). Biomedical Optics Express, 2016. 7(6): p. 2373–2384.

    Google Scholar 

  23. Majedy, M., et al., Influence of optical aberrations on depth-specific spatial frequency domain techniques. Journal of Biomedical Optics, 2022. 27(11).

    Google Scholar 

  24. Mazhar, A., et al., Implementation of an LED based Clinical Spatial Frequency Domain Imaging System. Emerging Digital Micromirror Device Based Systems and Applications Iv, 2012. 8254.

    Google Scholar 

  25. Saager, R.B., et al., A Light Emitting Diode (LED) Based Spatial Frequency Domain Imaging System for Optimization of Photodynamic Therapy of Nonmelanoma Skin Cancer: Quantitative Reflectance Imaging. Lasers in Surgery and Medicine, 2013. 45(4): p. 207–215.

    Google Scholar 

  26. Applegate, M.B., et al., OpenSFDI: an open-source guide for constructing a spatial frequency domain imaging system. Journal of Biomedical Optics, 2020. 25(1).

    Google Scholar 

  27. Ayers, F.R., et al., Wide-Field Spatial Mapping of In Vivo Tattoo Skin Optical Properties Using Modulated Imaging. Lasers in Surgery and Medicine, 2009. 41(6): p. 442–453.

    Google Scholar 

  28. Cuccia, D.J., et al., Quantitation and mapping of tissue optical properties using modulated imaging. Journal of Biomedical Optics, 2009. 14(2).

    Google Scholar 

  29. Gioux, S., et al., First-in-human pilot study of a spatial frequency domain oxygenation imaging system. Journal of Biomedical Optics, 2011. 16(8).

    Google Scholar 

  30. Stromberg, T., et al., Spatial frequency domain imaging using a snap-shot filter mosaic camera with multi-wavelength sensitive pixels. Photonics in Dermatology and Plastic Surgery 2018, 2018. 10467.

    Google Scholar 

  31. Kennedy, G., et al., Spatial frequency domain imager based on a compact multiaperture camera: testing and feasibility for noninvasive burn severity assessment. Journal of Biomedical Optics, 2021. 26(8).

    Google Scholar 

  32. Belcastro, L., et al., Handheld multispectral imager for quantitative skin assessment in low-resource settings. Journal of Biomedical Optics, 2020. 25(8).

    Google Scholar 

  33. Ponticorvo, A., et al., Evaluating clinical observation versus Spatial Frequency Domain Imaging (SFDI), Laser Speckle Imaging (LSI) and thermal imaging for the assessment of burn depth. Burns, 2019. 45(2): p. 450–460.

    Google Scholar 

  34. Hosking, A.M., et al., Spatial Frequency Domain Imaging for Burn Wound Assessment: A Case Series. Lasers in Surgery and Medicine, 2018. 50: p. S13–S13.

    Google Scholar 

  35. Nguyen, J.Q., et al., Spatial frequency domain imaging of burn wounds in a preclinical model of graded burn severity. Journal of Biomedical Optics, 2013. 18(6).

    Google Scholar 

  36. Lee, S., et al., SFDI biomarkers provide a quantitative ulcer risk metric and can be used to predict diabetic foot ulcer onset. Journal of Diabetes and Its Complications, 2020. 34(9).

    Google Scholar 

  37. Murphy, G.A., et al., Quantifying dermal microcirculatory changes of neuropathic and neuroischemic diabetic foot ulcers using spatial frequency domain imaging: a shade of things to come? Bmj Open Diabetes Research & Care, 2020. 8(2).

    Google Scholar 

  38. Yafi, A., et al., Quantitative Skin Assessment Using Spatial Frequency Domain Imaging (SFDI) in Patients With or at High Risk for Pressure Ulcers. Lasers in Surgery and Medicine, 2017. 49(9): p. 827–834.

    Google Scholar 

  39. Saidian, M., et al., Characterisation of impaired wound healing in a preclinical model of induced diabetes using wide-field imaging and conventional immunohistochemistry assays. International Wound Journal, 2019. 16(1): p. 144–152.

    Google Scholar 

  40. Saidian, M., et al., Multimodality Optical Characterization of Impaired Wound Healing in a Principal Model of Diabetes Mellitus. Lasers in Surgery and Medicine, 2017. 49: p. 8–9.

    Google Scholar 

  41. Sayadi, L.R., et al., A Quantitative Assessment of Wound Healing With Oxygenated Micro/Nanobubbles in a Preclinical Burn Model. Annals of Plastic Surgery, 2021. 87(4): p. 421–426.

    Google Scholar 

  42. Kennedy, G.T., et al., Spatial frequency domain imaging: a quantitative, noninvasive tool for in vivo monitoring of burn wound and skin graft healing. Journal of Biomedical Optics, 2019. 24(7).

    Google Scholar 

  43. Yafi, A., et al., Postoperative quantitative assessment of reconstructive tissue status in a cutaneous flap model using spatial frequency domain imaging. Plast Reconstr Surg, 2011. 127(1): p. 117–130.

    Google Scholar 

  44. Pharaon, M.R., et al., Early detection of complete vascular occlusion in a pedicle flap model using quantitative [corrected] spectral imaging. Plast Reconstr Surg, 2010. 126(6): p. 1924–1935.

    Google Scholar 

  45. Ponticorvo, A., et al., Quantitative assessment of partial vascular occlusions in a swine pedicle flap model using spatial frequency domain imaging. Biomed Opt Express, 2013. 4(2): p. 298–306.

    Google Scholar 

  46. Nguyen, J.T., et al., A novel pilot study using spatial frequency domain imaging to assess oxygenation of perforator flaps during reconstructive breast surgery. Ann Plast Surg, 2013. 71(3): p. 308–15.

    Google Scholar 

  47. Vargas, C.R., et al., Intraoperative Hemifacial Composite Flap Perfusion Assessment Using Spatial Frequency Domain Imaging: A Pilot Study in Preparation for Facial Transplantation. Ann Plast Surg, 2016. 76(2): p. 249–55.

    Google Scholar 

  48. Nadeau, K.P., et al., Quantitative assessment of renal arterial occlusion in a porcine model using spatial frequency domain imaging. Opt Lett, 2013. 38(18): p. 3566–9.

    Google Scholar 

  49. Tabassum, S., et al., Two-layer inverse model for improved longitudinal preclinical tumor imaging in the spatial frequency domain. J Biomed Opt, 2018. 23(7): p. 1–12.

    Google Scholar 

  50. Tabassum, S., et al., Feasibility of spatial frequency domain imaging (SFDI) for optically characterizing a preclinical oncology model. Biomed Opt Express, 2016. 7(10): p. 4154–4170.

    Google Scholar 

  51. Zhao, Y., et al., Angle correction for small animal tumor imaging with spatial frequency domain imaging (SFDI). Biomed Opt Express, 2016. 7(6): p. 2373–84.

    Google Scholar 

  52. Tank, A., et al., Spatial frequency domain imaging for monitoring immune-mediated chemotherapy treatment response and resistance in a murine breast cancer model. Sci Rep, 2022. 12(1): p. 5864.

    Google Scholar 

  53. Saager, R.B., et al., Quantitative fluorescence imaging of protoporphyrin IX through determination of tissue optical properties in the spatial frequency domain. J Biomed Opt, 2011. 16(12): p. 126013.

    Google Scholar 

  54. Rohrbach, D.J., et al., Characterization of nonmelanoma skin cancer for light therapy using spatial frequency domain imaging. Biomed Opt Express, 2015. 6(5): p. 1761–6.

    Google Scholar 

  55. Rohrbach, D.J., et al., Preoperative mapping of nonmelanoma skin cancer using spatial frequency domain and ultrasound imaging. Acad Radiol, 2014. 21(2): p. 263–70.

    Google Scholar 

  56. Laughney, A.M., et al., Spectral discrimination of breast pathologies in situ using spatial frequency domain imaging. Breast Cancer Res, 2013. 15(4): p. R61.

    Google Scholar 

  57. Laughney, A.M., et al., System analysis of spatial frequency domain imaging for quantitative mapping of surgically resected breast tissues. J Biomed Opt, 2013. 18(3): p. 036012.

    Google Scholar 

  58. Nandy, S., et al., Label-free quantitative optical assessment of human colon tissue using spatial frequency domain imaging. Tech Coloproctol, 2018. 22(8): p. 617–621.

    Google Scholar 

  59. Nandy, S., et al., Quantitative multispectral ex vivo optical evaluation of human ovarian tissue using spatial frequency domain imaging. Biomed Opt Express, 2018. 9(5): p. 2451–2456.

    Google Scholar 

  60. Lin, A.J., et al., Optical imaging in an Alzheimer’s mouse model reveals amyloid-beta-dependent vascular impairment. Neurophotonics, 2014. 1(1).

    Google Scholar 

  61. Lin, A.J., et al., In Vivo Optical Signatures of Neuronal Death in a Mouse Model of Alzheimer’s Disease. Lasers in Surgery and Medicine, 2014. 46(1): p. 27–33.

    Google Scholar 

  62. Shaul, O., et al., Application of spatially modulated near-infrared structured light to study changes in optical properties of mouse brain tissue during heatstress. Appl Opt, 2017. 56(32): p. 8880–8886.

    Google Scholar 

  63. Abookasis, D., et al., Imaging cortical absorption, scattering, and hemodynamic response during ischemic stroke using spatially modulated near-infrared illumination. J Biomed Opt, 2009. 14(2): p. 024033.

    Google Scholar 

  64. Konecky, S.D., et al., Hyperspectral optical tomography of intrinsic signals in the rat cortex. Neurophotonics, 2015. 2(4): p. 045003.

    Google Scholar 

  65. Reisman, M.D., et al., Structured illumination diffuse optical tomography for noninvasive functional neuroimaging in mice. Neurophotonics, 2017. 4(2): p. 021102.

    Google Scholar 

  66. Vervandier, J. and S. Gioux, Single snapshot imaging of optical properties. Biomed Opt Express, 2013. 4(12): p. 2938–44.

    Google Scholar 

  67. Aguenounon, E., et al., Single snapshot of optical properties image quality improvement using anisotropic two-dimensional windows filtering. J Biomed Opt, 2019. 24(7): p. 1–21.

    Google Scholar 

  68. Nadeau, K.P., et al., Multifrequency synthesis and extraction using square wave projection patterns for quantitative tissue imaging. J Biomed Opt, 2015. 20(11): p. 116005.

    Google Scholar 

  69. Ghijsen, M., et al., Real-time simultaneous single snapshot of optical properties and blood flow using coherent spatial frequency domain imaging (cSFDI). Biomed Opt Express, 2016. 7(3): p. 870–82.

    Google Scholar 

  70. Torabzadeh, M., et al., Hyperspectral imaging in the spatial frequency domain with a supercontinuum source. J Biomed Opt, 2019. 24(7): p. 1–9.

    Google Scholar 

  71. Torabzadeh, M., et al., Compressed single pixel imaging in the spatial frequency domain. J Biomed Opt, 2017. 22(3): p. 30501.

    Google Scholar 

  72. Wilson, R.H., et al., High-speed spatial frequency domain imaging of rat cortex detects dynamic optical and physiological properties following cardiac arrest and resuscitation. Neurophotonics, 2017. 4(4).

    Google Scholar 

  73. Saager, R.B., D.J. Cuccia, and A.J. Durkin, Determination of optical properties of turbid media spanning visible and near-infrared regimes via spatially modulated quantitative spectroscopy. Journal of Biomedical Optics, 2010. 15(1).

    Google Scholar 

  74. Saager, R.B., et al., Portable (handheld) clinical device for quantitative spectroscopy of skin, utilizing spatial frequency domain reflectance techniques. Review of Scientific Instruments, 2017. 88(9).

    Google Scholar 

  75. Saager, R.B., et al., Impact of hemoglobin breakdown products in the spectral analysis of burn wounds using spatial frequency domain spectroscopy. Journal of Biomedical Optics, 2019. 24(2).

    Google Scholar 

  76. Saager, R.B., et al., Method using in vivo quantitative spectroscopy to guide design and optimization of low-cost, compact clinical imaging devices: emulation and evaluation of multispectral imaging systems. Journal of Biomedical Optics, 2018. 23(4).

    Google Scholar 

  77. Saager, R.B., et al., Method for depth-resolved quantitation of optical properties in layered media using spatially modulated quantitative spectroscopy. Journal of Biomedical Optics, 2011. 16(7).

    Google Scholar 

  78. Jacques, S.L., Simple Optical Theory for Light Dosimetry during Pdt. Optical Methods for Tumor Treatment and Detection: Mechanisms and Techniques in Photodynamics Therapy, 1992. 1645: p. 155–165.

    Google Scholar 

  79. Saager, R.B., et al., In vivo measurements of cutaneous melanin across spatial scales: using multiphoton microscopy and spatial frequency domain spectroscopy. Journal of Biomedical Optics, 2015. 20(6).

    Google Scholar 

  80. Saager, R.B., et al., In vivo isolation of the effects of melanin from underlying hemodynamics across skin types using spatial frequency domain spectroscopy. Journal of Biomedical Optics, 2016. 21(5).

    Google Scholar 

  81. Konecky, S.D., et al., Quantitative optical tomography of sub-surface heterogeneities using spatially modulated structured light. Opt Express, 2009. 17(17): p. 14780–90.

    Google Scholar 

  82. Cuccia, D.J., et al., Modulated imaging: quantitative analysis and tomography of turbid media in the spatial-frequency domain. Opt Lett, 2005. 30(11): p. 1354–6.

    Google Scholar 

  83. Lukic, V., V.A. Markel, and J.C. Schotland, Optical tomography with structured illumination. Opt Lett, 2009. 34(7): p. 983–5.

    Google Scholar 

  84. Belanger, S., et al., Real-time diffuse optical tomography based on structured illumination. J Biomed Opt, 2010. 15(1): p. 016006.

    Google Scholar 

  85. D’Andrea, C., et al., Fast 3D optical reconstruction in turbid media using spatially modulated light. Biomed Opt Express, 2010. 1(2): p. 471–481.

    Google Scholar 

  86. Kristensson, E., E. Berrocal, and M. Alden, Quantitative 3D imaging of scattering media using structured illumination and computed tomography. Opt Express, 2012. 20(13): p. 14437–50.

    Google Scholar 

  87. Hayakawa, C.K., et al., MCCL: an open-source software application for Monte Carlo simulations of radiative transport. Journal of Biomedical Optics, 2022. 27(8).

    Google Scholar 

  88. Kanick, S.C., et al., Sub-diffusive scattering parameter maps recovered using wide-field high-frequency structured light imaging. Biomed Opt Express, 2014. 5(10): p. 3376–90.

    Google Scholar 

  89. Bodenschatz, N., et al., Detecting structural information of scatterers using spatial frequency domain imaging. J Biomed Opt, 2015. 20(11): p. 116006.

    Google Scholar 

  90. McClatchy, D.M., 3rd, et al., Wide-field quantitative imaging of tissue microstructure using sub-diffuse spatial frequency domain imaging. Optica, 2016. 3(6): p. 613–621.

    Google Scholar 

  91. Mazhar, A., et al., Structured illumination enhances resolution and contrast in thick tissue fluorescence imaging. J Biomed Opt, 2010. 15(1): p. 010506.

    Google Scholar 

  92. Konecky, S.D., et al., Spatial frequency domain tomography of protoporphyrin IX fluorescence in preclinical glioma models. J Biomed Opt, 2012. 17(5): p. 056008.

    Google Scholar 

  93. Ducros, N., et al., Full-wavelet approach for fluorescence diffuse optical tomography with structured illumination. Opt Lett, 2010. 35(21): p. 3676–8.

    Google Scholar 

  94. Ghijsen, M., et al., Quantitative real-time optical imaging of the tissue metabolic rate of oxygen consumption. J Biomed Opt, 2018. 23(3): p. 1–12.

    Google Scholar 

  95. Ghassemi, P., et al., A polarized multispectral imaging system for quantitative assessment of hypertrophic scars. Biomed Opt Express, 2014. 5(10): p. 3337–54.

    Google Scholar 

  96. Yang, B., et al., Polarized light spatial frequency domain imaging for non-destructive quantification of soft tissue fibrous structures. Biomed Opt Express, 2015. 6(4): p. 1520–33.

    Google Scholar 

  97. Konecky, S.D., et al., Imaging scattering orientation with spatial frequency domain imaging. J Biomed Opt, 2011. 16(12): p. 126001.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rolf B. Saager .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saager, R.B. (2024). Spatial Frequency Domain Imaging. In: Liang, J. (eds) Coded Optical Imaging. Springer, Cham. https://doi.org/10.1007/978-3-031-39062-3_9

Download citation

Publish with us

Policies and ethics