Skip to main content

Single-Pixel Imaging and Computational Ghost Imaging

  • Chapter
  • First Online:
Coded Optical Imaging
  • 484 Accesses

Abstract

Single-pixel imaging reconstructs an image by sampling a scene with a series of patterns by associating them with their corresponding measured intensities, whereas a modern digital camera captures an image using a pixelated detector array. It has been demonstrated that single-pixel imaging is suited for unconventional applications, such as wide spectrum imaging, terahertz imaging, X-ray imaging, and so on. In this chapter, the investigation value of single-pixel imaging is discussed, a brief history of single-pixel imaging is given, its working principles are explained, and its performance in terms of its key elements is analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G. Kreimer. The green algal eyespot apparatus: a primordial visual system and more?. Current Genetics, 55, 19–43, 2009.

    Article  CAS  PubMed  Google Scholar 

  2. C. Greuet. Structure fine de locelle ´ d’Erythropsis pavillardi Hertwig, pteridinien Warnowiidae Lindemann. Comptes rendus de l'Academie des sciences, 261, 1904–1907, 1965.

    Google Scholar 

  3. C. Greuet. Anatomie ultrastructurale des Pteridiniens ´ Warnowiidae en rapport avec la differenciation des organites cellulaires. éditeur non identifié, 1969

    Google Scholar 

  4. H. Takeda, K. Nishimura, K. Agata. Planarians maintain a constant ratio of different cell types during changes in body size by using the stem cell system. Zoological Science, 26, 805–813, 2009.

    Article  PubMed  Google Scholar 

  5. W. J. Gehring. 21The evolution of vision. Wiley Interdisciplinary Reviews: Developmental Biology, 3, 1–40, 2014.

    Article  CAS  PubMed  Google Scholar 

  6. W. Smith. “Selenium”, its electrical qualities and the effect of light thereon. Journal of the Society of Telegraph Engineers, 6, 423–441, 1877.

    Article  Google Scholar 

  7. P. Nipkow. Optical disk. German Patent, 30150, 1884.

    Google Scholar 

  8. B. J. Logie. Apparatus for transmitting views or images to a distance. U.S. Patent, 1,699,270, 1929.

    Google Scholar 

  9. G. E. Smith. The invention and early history of the CCD. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 607, 1–6, 2009.

    Article  CAS  Google Scholar 

  10. D. Renshaw, P. B. Denyer, G. Wang, M. Lu. ASIC image sensors. IEEE International Symposium on Circuits and Systems, 3038–3041, 1990.

    Google Scholar 

  11. T. B. Pittman, Y. H. Shih, D. V. Strekalov, A. V. Sergienko. Optical imaging by means of two-photon quantum entanglement. Physical Review A, 52, R3429–R3432, 1995.

    Article  CAS  Google Scholar 

  12. J. H. Shapiro. Computational ghost imaging. Physical Review A, 78, 13, 2008.

    Article  Google Scholar 

  13. D. Takhar, J. N. Laska, M. B. Wakin, M. F. Duarte, D. Baron, S. Sarvotham, K. F. Kelly, R. G. Baraniuk. A New Compressive Imaging Camera Architecture using Optical-Domain Compression. Proc. IS&T/SPIE Computational Imaging IV, January 2006

    Google Scholar 

  14. Y. Bromberg, O. Katz, Y. Silberberg. Ghost imaging with a single detector. Physical Review A, 5, 053840, 2009.

    Article  Google Scholar 

  15. P. Mertz, F. Gray. Bell Syst. Techn. Jr, 13, 464, 1934.

    Google Scholar 

  16. T. J. Kane, W. J. Kozlovsky, R. L. Byer, C. E. Byvik. Coherent laser radar at 1.06 μm using Nd:YAG lasers. Optics Letters, 12, 239–241, 1987.

    Article  CAS  PubMed  Google Scholar 

  17. B.-B. Hu, M. C. Nuss. Imaging with terahertz waves. Optics Letters, 20, 1716, 1995.

    Google Scholar 

  18. P. Thibault, M. Dierolf, A. Menzel, O. Bunk, C. David, F. Pfeiffer. High-resolution scanning x-ray diffraction microscopy. Science, 321, 379–382, 2008.

    Article  CAS  PubMed  Google Scholar 

  19. D.N. Klyshko. A simple method of preparing pure states of an optical field, of implementing the Einstein–Podolsky–Rosen experiment, and of demonstrating the complementarity principle. Soviet Physics Uspekhi, 31, 74, 1988.

    Article  Google Scholar 

  20. B. Rs, B. Sj, B. Rw. “Two-photon” coincidence imaging with a classical source - art. no. 113601. Physical review letters, 89, 113601, 2002.

    Google Scholar 

  21. F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, L.A. Lugiato. High-resolution ghost image and ghost diffraction experiments with thermal light. Physical review letters, 94, 183602, 2005.

    Article  CAS  PubMed  Google Scholar 

  22. A. Valenci, G. M. Scarcelli, D’Angelo, Y.-H. Shih. Two-photon imaging with thermal light. Physical review letters, 94, 063601, 2005.

    Google Scholar 

  23. Y.-H. Zhai, X.-H. Chen, D. Zhang, L.-A. Wu, Two-photon interference with true thermal light. Physical Review A, 72, 2005.

    Google Scholar 

  24. Y.-H. Shih. The physics of ghost imaging. Classical, Semi-classical and Quantum Noise, Springer, New York, NY, 169–222, 2012.

    Google Scholar 

  25. B. I. Erkmen, J. H. Shapiro. A unified theory of ghost imaging with Gaussian state light. Physical Review A, 77, 043809, 2008.

    Article  Google Scholar 

  26. Y. H. Shih. The physics of ghost imaging – nonlocal interference or local intensity fluctuation correlation? Quantum Information Processing, 11, 995–1001, 2012.

    Article  Google Scholar 

  27. J. H. Shapiro, R. W. Boyd. Response to “The physics of ghost imaging – nonlocal interference or local intensity fluctuation correlation?”. Quantum Information Processing, 11, 1003–1011, 2012.

    Article  Google Scholar 

  28. J. H. Shapiro, R.W. Boyd. The physics of ghost imaging. Quantum Information Processing, 11, 949–993, 2012.

    Article  Google Scholar 

  29. E. Candès, J. Romberg, T. Tao. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on information theory, 52, 489–509, 2006.

    Article  Google Scholar 

  30. D. Donoho. Compressed sensing. IEEE Transactions on information theory, 52, 1289–1306, 2006.

    Article  Google Scholar 

  31. E. Candès, T. Tao. Near optimal signal recovery from random projections: Universal encoding strategies?. IEEE transactions on information theory, 52, 5406–5425, 2006.

    Article  Google Scholar 

  32. book Convex Optimization Stephen Boyd Department of Electrical Engineering Stanford University.

    Google Scholar 

  33. R. Aravind, G. L. Cash, J. P. Worth. On implementing the JPEG still-picture compression algorithm. Visual communications and image processing IV. SPIE,1199, 799–809, 1989.

    Google Scholar 

  34. O. Katz, Y. Bromberg, Y. Silberberg. Compressive ghost imaging. Applied Physics Letters, 95, 131110, 2009.

    Article  Google Scholar 

  35. R. H. Brown, R. Q. Twiss. Correlation between photons in two coherent beams of light. Nature, 177, 27–29, 1956.

    Article  Google Scholar 

  36. R. H. Brown, R.Q. Twiss. A test of new type of stellar interferometer on Sirius. Nature, 178, 1046–1048, 1956.

    Article  Google Scholar 

  37. R. J. Glauber. The quantum theory of optical coherence. Physical Review, 130, 2529–2539, 1963.

    Article  Google Scholar 

  38. E. C. G. Sudarshan, Equivalence of semiclassical and quantum mechanical descriptions of statistical light beams. Physical Review Letters, 10, 277–279, 1963.

    Article  Google Scholar 

  39. J. S. Massa, A. M. Wallace, G. S. Buller, S. J. Fancey, A. C. Walker. Laser depth measurement based on time-correlated single photon counting. Optics letters, 22, 543–545, 1997.

    Article  CAS  PubMed  Google Scholar 

  40. A. McCarthy, R. J. Collins, N. J. Krichel, V. Fernandez, A. M. Wallace, G. S. Buller. Long-range time-of-flight scanning sensor based on high-speed time-correlated single-photon counting. Applied optics, 48, 6241–6251, 2009.

    Article  PubMed  Google Scholar 

  41. A. McCarthy, N. J. Krichel, N. R. Gemmell, X. Ren, M. G. Tanner, S. N. Dorenbos. Kilometer-range, high resolution depth imaging via 1560 nm wavelength single-photon detection. Optics express, 21, 8904–8915, 2013.

    Article  PubMed  Google Scholar 

  42. M. Aβmann, M. Bayer. Compressive adaptive computational ghost imaging. Scientific reports, 3, 1–5, 2013.

    Article  Google Scholar 

  43. W.-K. Yu, M.-F. Li, X.-R. Yao, X.-F. Liu, L.-A. Wu, G.-J. Zhai. Adaptive compressive ghost imaging based on wavelet trees and sparse representation. Optics express, 22, 7133–7144, 2014.

    Article  PubMed  Google Scholar 

  44. F. Rousset, N. Ducros, A. Farina, G. Valentini, C. D’Andrea, F. Peyrin. Adaptive basis scan by wavelet prediction for single-pixel imaging. IEEE Transactions on Computational Imaging, 3, 36–46, 2016.

    Article  Google Scholar 

  45. K. M. Czajkowski, A. Pastuszczak, R. Kotyński. Single-pixel imaging with Morlet wavelet correlated random patterns. Scientific reports, 8, 1–8, 2018.

    Article  CAS  Google Scholar 

  46. B. Lochocki, A. Gambín, S. Manzanera, E. Irles, E. Tajahuerce, J. Lancis, P. Artal. Single pixel camera ophthalmoscope. Optica, 3, 1056–1059, 2016.

    Article  Google Scholar 

  47. M.-J. Sun, M. P. Edgar, ; D. B. Phillips,; Phillips, D.B.; G. M. Gibson, M. J. Padgett. Improving the signal-to-noise ratio of single-pixel imaging using digital microscanning. Optics express, 24, 10476–10485, 2016.

    Google Scholar 

  48. L. Wang, S. Zhao. Fast reconstructed and high-quality ghost imaging with fast Walsh-Hadamard transform. Photonics Research, 4, 240–244, 2016.

    Article  Google Scholar 

  49. Z. Zhang, X. Ma, J. Zhong. Single-pixel imaging by means of Fourier spectrum acquisition. Nature communications, 6, 1–6, 2015.

    Google Scholar 

  50. K. M. Czajkowski, A. Pastuszczak, R. Kotyński. Real-time single-pixel video imaging with Fourier domain regularization. Optics express, 26, 20009–20022, 2018.

    Article  PubMed  Google Scholar 

  51. D. Shin, J. H. Shapiro, V. K. Goyal. Performance Analysis of Low-Flux Least-Squares Single-Pixel Imaging. IEEE Signal Processing Letters, 23, 1756–1760, 2016.

    Google Scholar 

  52. N. Radwell, K. J. Mitchell, G. M. Gibson, M.P. Edgar, R. Bowman, M.J. Padgett. Single-pixel infrared and visible microscope. Optica, 1, 285–289, 2014.

    Article  CAS  Google Scholar 

  53. M.-J. Sun, L.-T. Meng, M. P. Edgar, M. J. Padgett, N. Radwell. A Russian Dolls ordering of the Hadamard basis for compressive single-pixel imaging. Scientific Reports, 7, 3464, 2017.

    Article  PubMed  PubMed Central  Google Scholar 

  54. J.Aalbers et al., Background Determination for the LUX-ZEPLIN (LZ) Dark Matter Experiment, arXiv:2211.17120, https://doi.org/10.48550/arXiv.2211.17120

  55. J. Cheng, S.-S. Han. Incoherent coincidence imaging and its applicability in X-ray diffraction. Physical Review Letters, 92, 093903, 2004.

    Article  PubMed  Google Scholar 

  56. J. Greenberg, K. Krishnamurthy, D. Brady. Compressive single-pixel snapshot x-ray diffraction imaging. Optics Letters, 39, 111–114, 2014.

    Article  PubMed  Google Scholar 

  57. A.-X. Zhang, Y.-H. He, L.-A. Wu, L.-M. Chen, B.-B. Wang. Tabletop x-ray ghost imaging with ultra-low radiation. Optica, 5, 374–377, 2018.

    Article  CAS  Google Scholar 

  58. V. Studer, J. Bobin, M. Chahid, H.S. Mousavi, E. Candes, M. Dahan. Compressive fluorescence microscopy for biological and hyperspectral imaging. Proceedings of the National Academy of Sciences, 109, E1679–E1687, 2012.

    Article  CAS  Google Scholar 

  59. S. S. Welsh, M. P. Edgar, R. Bowman, P. Jonathan, B.-Q. Sun, M. J. Padgett. Fast full-color computational imaging with single-pixel detectors. Optics Express, 21, 23068–23074, 2013.

    Article  PubMed  Google Scholar 

  60. M. P. Edgar, G. M. Gibson, R. W. Bowman, B.-Q. Sun, N. Radwell, K. J. Mitchell, S.S. Welsh, M.J. Padgett. Simultaneous real-time visible and infrared video with single-pixel detectors. Scientific Reports, 5, 10669, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  61. L.-H. Bian, J.-L. Suo, G.-H. Situ, Z.-W. Li, J.-T. Fan, F. Chen, Q.-H. Dai. Multispectral imaging using a single bucket detector. Scientific Reports, 6, 24752, 2016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. W. Chen, M.-J. Sun*, W.-J. Deng, H.-X. Hu, L.-J. Li, and X.-J Zhang. Hyperspectral imaging via a multiplexing digital micromirror device. Optics and Lasers in Engineering, 151, 106889, 2021.

    Google Scholar 

  63. C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman. Terahertz compressive imaging with metamaterial spatial light modulators. Nature photonics, 8, 605–609, 2014.

    Article  CAS  Google Scholar 

  64. R. I. Stantchev, B. Sun, S. M. Hornett, P. A. Hobson, G. M. Gibson, M. J. Padgett. Noninvasive, near-field terahertz imaging of hidden objects using a single-pixel detector. Science advances, 2, e1600190, 2016.

    Article  PubMed  PubMed Central  Google Scholar 

  65. G. A. Howland, P. B. Dixon, J. C. Howell. Photon-counting compressive sensing laser radar for 3D imaging. Applied optics, 50, 5917–5920, 2011.

    Article  CAS  PubMed  Google Scholar 

  66. C. Zhao, W. Gong, M. Chen, E. Li, H. Wang, W. Xu. Ghost imaging LIDAR via sparsity constraints. Applied Physics Letters, 101, 141123, 2012.

    Article  Google Scholar 

  67. G. A. Howland, D. J. Lum, M. R. Ware, J. C. Howell. Photon counting compressive depth mapping. Optics Express, 21, 23822, 2013.

    Article  PubMed  Google Scholar 

  68. M.-J. Sun, M. P. Edgar, G. M. Gibson, B. Sun, N. Radwell, R. Lamb. Single-pixel three-dimensional imaging with time-based depth resolution. Nature communications, 7, 12010, 2016.

    Article  PubMed  PubMed Central  Google Scholar 

  69. M.-J. Sun*, Z.-H. Xu, and L.-A. Wu. Collective noise model for focal plane modulated single-pixel imaging. Optics and Lasers in Engineering, 100, 18–22, 2018.

    Google Scholar 

  70. R. Li, J.-Y. Hong1, X. Zhou, C.-M. Wang, Z.-Y. Chen, B. He, Z.-W. Hu, N. Zhang, Q. Li, P. Xue, X. Zhang. SNR study on Fourier single-pixel imaging. New Journal of Physics, 23, 073025, 2021.

    Google Scholar 

  71. F. Ferri, D. Magatti, L. Lugiato, A. Gatti. Differential ghost imaging. Physical review letters, 104, 253603, 2010.

    Article  CAS  PubMed  Google Scholar 

  72. I. N. Agafonov, K. H. Luo, L. A. Wu, M. V. Chekhova, Q. Liu, R. Xian. High-visibility, high-order lensless ghost imaging with thermal light. Optics letters, 35, 1166–1168, 2010.

    Article  PubMed  Google Scholar 

  73. B. Sun, S. Welsh, M. P. Edgar, J. H. Shapiro, M. J. Padgett. Normalized ghost imaging. Optics letters, 20, 16892–16901, 2012.

    Google Scholar 

  74. F.-Y. Sha, S. K. Sahoo, H. Q. Lam, B. K. Ng, C. Dang. Improving single-pixel imaging performance in high noise condition by under-sampling. Scientific Reports, 10, 1–8, 2020.

    Article  Google Scholar 

  75. M. Herman, J. Tidman, D. Hewitt, T. Weston, L. McMackin, F. Ahmad. A higher-speed compressive sensing camera through multi-diode design. Compressive Sensing II. SPIE, 8717, 42–56, 2013.

    Google Scholar 

  76. M.-J.Sun, W. Chen, T.-F. Liu, L.-J. Li. Image retrieval in spatial and temporal domains with a quadrant detector. IEEE Photonics Journal, 9, 1–6, 2017.

    Google Scholar 

  77. M.-J. Sun*, H.-Y. Wang, and J.-Y. Huang. Improving the performance of computational ghost imaging by using a quadrant detector and digital micro-scanning. Scientific Reports, 9, 4105, 2019.

    Article  PubMed  PubMed Central  Google Scholar 

  78. A. N. Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P. Williams, J. P. Dowling. Quantum interferometric optical lithography: Exploiting entanglement to beat the diffraction limit. Physical Review Letters, 85, 2733, 2000.

    Article  CAS  PubMed  Google Scholar 

  79. M. D’Angelo, M. V. Chekhova, Y.H.Shih. Two-photon diffraction and quantum lithography. Phys. Physical Review Letters, 87, 013602, 2001.

    Google Scholar 

  80. J. Xiong, D. Z. Cao, F. Huang, H. G. Li, X. J. Sun, K. G. Wang. Experimental observation of classical subwavelength interference with a pseudothermal light source. Physical review letters, 94, 173601, 2005.

    Article  PubMed  Google Scholar 

  81. W. Gong, S. Han. Super-resolution far-field ghost imaging via compressive sampling, e-print arXiv, 0911.4750, 2009.

    Google Scholar 

  82. M.-J. Sun, X. D. He, M. F. Li, L. A. Wu. Thermal light subwavelength diffraction using positive and negative correlations. Chinese Optics Letters, 14, 040301, 2016.

    Article  Google Scholar 

  83. A. Kallepalli, L. Viani, D. Stellinga, E. Rotunno, R. Bowman, G. M. Gibson, M.-J. Sun, P. Rosi, S. Frabboni, R. Balboni, A. Migliori, V. Grillo, M. J. Padgett. Challenging Point Scanning across Electron Microscopy and Optical Imaging using Computational Imaging. Intelligent Computing, 2022: 0001, 2022.

    Google Scholar 

  84. D. B. Phillips, M.-J. Sun, J. M. Taylor, M. P. Edgar, S. M. Barnett, G. M. Gibson, M. J. Padgett. Adaptive foveated single-pixel imaging with dynamic super-sampling. Science advances, 3, e1601782, 2017.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Z.-H. Xu, W. Chen, J. Penulas, M. J. Padgett, and M.-J. Sun*. 1000 fps computational ghost imaging using LED-based structured illumination. Optics Express, 26, 2427–2434, 2018.

    Google Scholar 

  86. H.-X. Huang, L.-J. Li, Y.-X. Ma, M.-J. Sun*. 25,000 fps Computational Ghost Imaging with Ultrafast Structured Illumination. Electronic Materials, 3, 93–100, 2022.

    Google Scholar 

  87. K. Komatsu, Y. Ozeki, Y. Nakano, T. Tanemura. Ghost imaging using integrated optical phased array. 2017 Optical Fiber Communications Conference and Exhibition (OFC). IEEE, 2017, 1-3, 2017.

    Google Scholar 

  88. L.-J. Li, W. Chen, X.-Y. Zhao, M.-J. Sun. Fast Optical Phased Array Calibration Technique for Random Phase Modulation LiDAR. IEEE Photonics Journal, 11, 1–10, 2019.

    Google Scholar 

  89. P. Kilcullen, T. Ozaki, J. Liang. Compressed ultrahigh-speed single-pixel imaging by swept aggregate patterns. Nature Communications, 13, 7879, 2022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. W.-J.Jiang, Y.-K. Yin, J.-P Jiao, X Zhao, B.-Q Sun. 2,000,000 fps 2D and 3D imaging of periodic or reproducible scenes with single-pixel detectors. Photonics Research, 10, 2157–2164, 2022.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-Jie Sun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sun, MJ. (2024). Single-Pixel Imaging and Computational Ghost Imaging. In: Liang, J. (eds) Coded Optical Imaging. Springer, Cham. https://doi.org/10.1007/978-3-031-39062-3_8

Download citation

Publish with us

Policies and ethics