Skip to main content

Part of the book series: AAPS Advances in the Pharmaceutical Sciences Series ((AAPS,volume 56))

  • 221 Accesses

Abstract

Current vaccine development is highly focused on safer vaccine strategies such as subunit vaccines containing purified parts of the pathogen. However, subunit vaccines suffer from low immunogenicity, often requiring the inclusion of an adjuvant to augment immune responses. Adjuvants boost vaccine efficacy by acting as agonists for pattern-recognition receptors (PRRs), which are present on the cell membrane and in different intracellular compartments of immune cells. The mechanistic insights into PRR activation led to the discovery of several adjuvant molecules that stimulate the immune system by diverse mechanisms. The physicochemical properties associated with these adjuvants and their ability to reach intracellular compartments of immune cells limit their usage. Nanoparticulate delivery systems aid adjuvants in overcoming these issues by enabling efficient encapsulation and precisely delivering them to intracellular compartments while safeguarding them from harsh in vivo conditions. Of note, nanoparticles possess self-adjuvant properties due to their pathogen-mimicking nature. Specifically, nano-adjuvant systems have been widely studied in the development of vaccines against infectious diseases, including the recent coronavirus disease 19 (COVID-19). This chapter focuses on the adjuvants and nano-adjuvant strategies studied for various infectious diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AC:

Alpha casein

AH:

Aluminum hydroxide adjuvant

Algel-IMDG:

Alum-absorbed imidazoquinoline

Alum-TT:

Aluminum hydroxide-adsorbed tetanus toxoid

AP-1:

Activator protein-1

APC:

Antigen-presenting cells

AS:

Adjuvant system

ASP:

Angelica sinensis polysaccharide

CARD:

Caspase recruitment domain

CDNs:

Cyclic dinucleotides

CFA:

Complete Freund’s Adjuvant

cGAMP:

Cyclic guanosine monophosphate–adenosine monophosphate

CLRs:

C-type lectin receptors

CpG ODN:

CpG oligodeoxynucleotides

CpG:

Cytosine phosphate-guanine

CR3:

Complement receptor 3

CSW:

Cell wall skeleton

DAMPs:

Danger-associated molecular patterns

DAP:

Diaminopimelic acid

DCs:

Dendritic cells

dLNs:

Draining lymph nodes

dsRNA:

Double-stranded RNA

ER:

Endoplasmic reticulum

GLA:

Glucopyranosyl lipid A

HA:

Hemagglutinin

HBsAg:

Hepatitis B surface antigen

HIV:

Human immunodeficiency virus

HPV:

Human papillomavirus

HSV:

Herpes simplex virus

IFN:

Interferon

IM:

Intramuscular injection

ISCOMs:

Immunostimulatory complexes

ISRE7:

Interferon-stimulated response element 7

ITAM:

Immunoreceptor signaling motif

LNPs:

Lipid nanoparticles

LPS:

Lipopolysaccharide

LRR:

Leucine-rich repeat

MAIT:

Mucosal-associated invariant T

MALP-2:

Macrophage activating lipopeptide

MAVS:

Mitochondria antiviral signaling

mDCs:

Myeloid dendritic cells

MDP:

Muramyl dipeptide

MHC:

Major histocompatibility complex

MPL:

Monophosphoryl lipid A

MPT:

Mycobacterium paratuberculosis

MyD88:

Myeloid differentiation primary response 88

NHPs:

Nonhuman primates

NK:

Natural killer cells

NLRP3:

Pyrin-domain-containing 3

NLRs:

Nod-like receptors

NP:

Nanoparticle

PAMPs:

Pathogen-associated molecular patterns

pDCs:

Plasmacytoid dendritic cells

PEG-b-PPS:

Poly(ethylene glycol)-b-poly(propylene sulfide)

PI3K:

Phosphoinositide 3-kinase

PLA:

Poly(lactic acid)

PLGA:

Poly(lactic-co-glycolic acid)

poly (I:C):

Polyriboinosinic: polyribocytidylic acid (I:C)

PRRs:

Pattern-recognition receptors

RIG-I:

Retinoic acid-inducible gene I

RIP1:

Receptor-interacting serine/threonine-protein kinase 1

RLRs:

RIG-I-like receptors

ROS:

Reactive oxygen species

SC:

Subcutaneous

STING:

Stimulator of interferon genes

Syk:

Spleen tyrosine kinase

TBK1:

TANK-binding kinase 1

TDB:

Trehalose 6,6′-dibehenate

TLRs:

Toll-like receptors

TRADD:

Tumor necrosis factor receptor type 1-associated death domain

TRAF3:

Tumor necrosis factor receptor-associated factors 3

TRAF6:

Tumor necrosis factor receptor-associated factors 6

TRAM:

TRIF-related adapter molecule

TRIF:

Toll/IL-1R domain-containing adaptor-inducing IFN-β

TT:

Tetanus toxoid

VLP:

Virus-like particles

References

  1. Centers for Disease Control and Prevention (CDC). Ten great public health achievements – Worldwide, 2001–2010. MMWR Morb Mortal Wkly Rep. 2011;60(24):814–8.

    Google Scholar 

  2. Pulendran B, Arunachalam PS, O’Hagan DT. Emerging concepts in the science of vaccine adjuvants. Nat Rev Drug Discov. 2021;20(6):454–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ramon G. Sur la toxine et sur l’anatoxine diphtheriques. Ann Inst Pasteur. 1924;38(1):13.

    Google Scholar 

  4. Awate S, Babiuk LA, Mutwiri G. Mechanisms of action of adjuvants. Front Immunol. 2013;4:114.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Khurana S, et al. MF59 adjuvant enhances diversity and affinity of antibody-mediated immune response to pandemic influenza vaccines. Sci Transl Med. 2011;3(85):85ra48.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Galli G, et al. Fast rise of broadly cross-reactive antibodies after boosting long-lived human memory B cells primed by an MF59 adjuvanted prepandemic vaccine. Proc Natl Acad Sci U S A. 2009;106(19):7962–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Draper E, et al. A randomized, observer-blinded immunogenicity trial of Cervarix(®) and Gardasil(®) human papillomavirus vaccines in 12–15 year old girls. PLoS One. 2013;8(5):e61825.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Reed SG, Orr MT, Fox CB. Key roles of adjuvants in modern vaccines. Nat Med. 2013;19(12):1597–608.

    Article  CAS  PubMed  Google Scholar 

  9. Girard MP, et al. Report of the 7th meeting on evaluation of pandemic influenza vaccines in clinical trials, World Health Organization, Geneva, 17–18 February 2011. Vaccine. 2011;29(44):7579–86.

    Article  PubMed  Google Scholar 

  10. Tong NK, et al. Immunogenicity and safety of an adjuvanted hepatitis B vaccine in pre-hemodialysis and hemodialysis patients. Kidney Int. 2005;68(5):2298–303.

    Article  CAS  PubMed  Google Scholar 

  11. Levie K, et al. A 2-dose regimen of a recombinant hepatitis B vaccine with the immune stimulant AS04 compared with the standard 3-dose regimen of Engerix-B in healthy young adults. Scand J Infect Dis. 2002;34(8):610–4.

    Article  CAS  PubMed  Google Scholar 

  12. Kasturi SP, et al. Programming the magnitude and persistence of antibody responses with innate immunity. Nature. 2011;470(7335):543–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. McCluskie MJ, et al. Enhancing immunogenicity of a 3’aminomethylnicotine-DT-conjugate anti-nicotine vaccine with CpG adjuvant in mice and non-human primates. Int Immunopharmacol. 2013;16(1):50–6.

    Article  CAS  PubMed  Google Scholar 

  14. Nanishi E, Dowling DJ, Levy O. Toward precision adjuvants: optimizing science and safety. Curr Opin Pediatr. 2020;32(1):125–38.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Lindblad EB. Aluminum adjuvants: basic concepts and progress in understanding. New York: Springer; 2015. p. 33–57.

    Google Scholar 

  16. Mannhalter JW, et al. Modulation of the human immune response by the non-toxic and non-pyrogenic adjuvant aluminium hydroxide: effect on antigen uptake and antigen presentation. Clin Exp Immunol. 1985;61(1):143–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Burrell LS, White JL, Hem SL. Stability of aluminium-containing adjuvants during aging at room temperature. Vaccine. 2000;18(21):2188–92.

    Article  CAS  PubMed  Google Scholar 

  18. Kreuter J. Possibilities of using nanoparticles as carriers for drugs and vaccines. J Microencapsul. 1988;5(2):115–27.

    Article  CAS  PubMed  Google Scholar 

  19. Herbert WJ. The mode of action of mineral-oil emulsion adjuvants on antibody production in mice. Immunology. 1968;14(3):301–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Hutchison S, et al. Antigen depot is not required for alum adjuvanticity. FASEB J. 2012;26(3):1272–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dupuis M, McDonald DM, Ott G. Distribution of adjuvant MF59 and antigen gD2 after intramuscular injection in mice. Vaccine. 1999;18(5–6):434–9.

    Article  CAS  PubMed  Google Scholar 

  22. Goto N, Akama K. Histopathological studies of reactions in mice injected with aluminum-adsorbed tetanus toxoid. Microbiol Immunol. 1982;26(12):1121–32.

    Article  CAS  PubMed  Google Scholar 

  23. Mosca F, et al. Molecular and cellular signatures of human vaccine adjuvants. Proc Natl Acad Sci. 2008;105(30):10501–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Morel S, et al. Adjuvant system AS03 containing α-tocopherol modulates innate immune response and leads to improved adaptive immunity. Vaccine. 2011;29(13):2461–73.

    Article  CAS  PubMed  Google Scholar 

  25. Morefield GL, et al. Role of aluminum-containing adjuvants in antigen internalization by dendritic cells in vitro. Vaccine. 2005;23(13):1588–95.

    Article  CAS  PubMed  Google Scholar 

  26. Flach TL, et al. Alum interaction with dendritic cell membrane lipids is essential for its adjuvanticity. Nat Med. 2011;17(4):479–87.

    Article  CAS  PubMed  Google Scholar 

  27. Lahiri A, et al. TLR 9 activation in dendritic cells enhances salmonella killing and antigen presentation via involvement of the reactive oxygen species. PLoS One. 2010;5(10):e13772.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Hart DN. Dendritic cells: unique leukocyte populations that control the primary immune response. Blood. 1997;90(9):3245–87.

    Article  CAS  PubMed  Google Scholar 

  29. Zhou L-J, Tedder TF. Human blood dendritic cells selectively express CD83, a member of the immunoglobulin superfamily. J Immunol. 1995;154(8):3821–35.

    Article  CAS  PubMed  Google Scholar 

  30. Coyle AJ, Gutierrez-Ramos JC. The expanding B7 superfamily: increasing complexity in costimulatory signals regulating T cell function. Nat Immunol. 2001;2(3):203–9.

    Article  CAS  PubMed  Google Scholar 

  31. Shi Y, Evans JE, Rock KL. Molecular identification of a danger signal that alerts the immune system to dying cells. Nature. 2003;425(6957):516–21.

    Article  CAS  PubMed  Google Scholar 

  32. Hatscher L, et al. Inflammasomes in dendritic cells: friend or foe? Immunol Lett. 2021;234:16–32.

    Article  CAS  PubMed  Google Scholar 

  33. Kiyono H, et al. Mucosal vaccines: wisdom from now and then. Int Immunol. 2021;33(12):767–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kurashima Y, et al. Mucosal mesenchymal cells: secondary barrier and peripheral educator for the gut immune system. Front Immunol. 2017;8:1787.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Kurashima Y, Kiyono H. Mucosal ecological network of epithelium and immune cells for gut homeostasis and tissue healing. Annu Rev Immunol. 2017;35:119–47.

    Article  CAS  PubMed  Google Scholar 

  36. Holmgren J, Czerkinsky C. Mucosal immunity and vaccines. Nat Med. 2005;11(S4):S45–53.

    Article  CAS  PubMed  Google Scholar 

  37. Li M, et al. Mucosal vaccines: strategies and challenges. Immunol Lett. 2020;217:116–25.

    Article  CAS  PubMed  Google Scholar 

  38. Russell MW, et al. Mucosal immunity in COVID-19: a neglected but critical aspect of SARS-CoV-2 infection. Front Immunol. 2020;11:611337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lycke N. Recent progress in mucosal vaccine development: potential and limitations. Nat Rev Immunol. 2012;12(8):592–605.

    Article  CAS  PubMed  Google Scholar 

  40. Lavelle EC, Ward RW. Mucosal vaccines — fortifying the frontiers. Nat Rev Immunol. 2022;22(4):236–50.

    Article  CAS  PubMed  Google Scholar 

  41. Mouro V, Fischer A. Dealing with a mucosal viral pandemic: lessons from COVID-19 vaccines. Mucosal Immunol. 2022;15(4):584–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Strugnell RA, Wijburg OL. The role of secretory antibodies in infection immunity. Nat Rev Microbiol. 2010;8(9):656–67.

    Article  CAS  PubMed  Google Scholar 

  43. Perez-Lopez A, et al. Mucosal immunity to pathogenic intestinal bacteria. Nat Rev Immunol. 2016;16(3):135–48.

    Article  CAS  PubMed  Google Scholar 

  44. O’neill LA, Golenbock D, Bowie AG. The history of toll-like receptors—redefining innate immunity. Nat Rev Immunol. 2013;13(6):453–60.

    Article  PubMed  Google Scholar 

  45. Barton GM, Kagan JC. A cell biological view of toll-like receptor function: regulation through compartmentalization. Nat Rev Immunol. 2009;9(8):535–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Iwasaki A, Medzhitov R. Toll-like receptor control of the adaptive immune responses. Nat Immunol. 2004;5(10):987–95.

    Article  CAS  PubMed  Google Scholar 

  47. Medzhitov R. Toll-like receptors and innate immunity. Nat Rev Immunol. 2001;1(2):135–45.

    Article  CAS  PubMed  Google Scholar 

  48. Savva A, Roger T. Targeting toll-like receptors: promising therapeutic strategies for the management of sepsis-associated pathology and infectious diseases. Front Immunol. 2013;4:387.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Gilkes AP, et al. Tuning subunit vaccines with novel TLR triagonist adjuvants to generate protective immune responses against Coxiella burnetii. J Immunol. 2020;204(3):611–21.

    Article  CAS  PubMed  Google Scholar 

  50. Jin MS, et al. Crystal structure of the TLR1-TLR2 heterodimer induced by binding of a tri-acylated lipopeptide. Cell. 2007;130(6):1071–82.

    Article  CAS  PubMed  Google Scholar 

  51. Jayakumar A, et al. TLR1/2 activation during heterologous prime-boost vaccination (DNA-MVA) enhances CD8+ T cell responses providing protection against leishmania (Viannia). PLoS Negl Trop Dis. 2011;5(6):e1204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Caproni E, et al. MF59 and Pam3CSK4 boost adaptive responses to influenza subunit vaccine through an IFN type I-independent mechanism of action. J Immunol. 2012;188(7):3088–98.

    Article  CAS  PubMed  Google Scholar 

  53. Rharbaoui F, et al. The mycoplasma-derived lipopeptide MALP-2 is a potent mucosal adjuvant. Eur J Immunol. 2002;32(10):2857–65.

    Article  CAS  PubMed  Google Scholar 

  54. Heitmann JS, et al. A COVID-19 peptide vaccine for the induction of SARS-CoV-2 T cell immunity. Nature. 2022;601(7894):617–22.

    Article  CAS  PubMed  Google Scholar 

  55. Jeong S-K, et al. COVID-19 subunit vaccine with a combination of TLR1/2 and TLR3 agonists induces robust and protective immunity. Vaccine. 2021;9(9):957.

    Article  CAS  Google Scholar 

  56. Rammensee H-G, et al. A new synthetic toll-like receptor 1/2 ligand is an efficient adjuvant for peptide vaccination in a human volunteer. J ImmunoTher Cancer. 2019;7(1):307.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Yang J-X, et al. Recent advances in the development of toll-like receptor agonist-based vaccine adjuvants for infectious diseases. Pharmaceutics. 2022;14(2):423.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Anwar MA, et al. Recent clinical trends in toll-like receptor targeting therapeutics. Med Res Rev. 2019;39(3):1053–90.

    Article  CAS  PubMed  Google Scholar 

  59. Thompson KA, et al. Results of a double-blind placebo-controlled study of the double-stranded RNA drug polyI:PolyC12U in the treatment of HIV infection. Eur J Clin Microbiol Infect Dis. 1996;15(7):580–7.

    Article  CAS  PubMed  Google Scholar 

  60. Naumann K, et al. Activation of dendritic cells by the novel toll-like receptor 3 agonist RGC100. Clin Dev Immunol. 2013;2013:1–11.

    Article  Google Scholar 

  61. Kagan JC, et al. TRAM couples endocytosis of toll-like receptor 4 to the induction of interferon-beta. Nat Immunol. 2008;9(4):361–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Okemoto K, et al. A potent adjuvant monophosphoryl lipid A triggers various immune responses, but not secretion of IL-1beta or activation of caspase-1. J Immunol. 2006;176(2):1203–8.

    Article  CAS  PubMed  Google Scholar 

  63. Mata-Haro V, et al. The vaccine adjuvant monophosphoryl lipid A as a TRIF-biased agonist of TLR4. Science. 2007;316(5831):1628–32.

    Article  CAS  PubMed  Google Scholar 

  64. Maisonneuve C, et al. Unleashing the potential of NOD- and toll-like agonists as vaccine adjuvants. Proc Natl Acad Sci. 2014;111(34):12294–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Detienne S, et al. Central role of CD169+ lymph node resident macrophages in the adjuvanticity of the QS-21 component of AS01. Sci Rep. 2016;6(1):39475.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Wang Z-B, Xu J. Better adjuvants for better vaccines: progress in adjuvant delivery systems, modifications, and adjuvant–antigen codelivery. Vaccine. 2020;8(1):128.

    Article  CAS  Google Scholar 

  67. Duthie MS, et al. Use of defined TLR ligands as adjuvants within human vaccines. Immunol Rev. 2011;239(1):178–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Means TK, et al. The toll-like receptor 5 stimulus bacterial flagellin induces maturation and chemokine production in human dendritic cells. J Immunol. 2003;170(10):5165–75.

    Article  CAS  PubMed  Google Scholar 

  69. Skountzou I, et al. Salmonella flagellins are potent adjuvants for intranasally administered whole inactivated influenza vaccine. Vaccine. 2010;28(24):4103–12.

    Article  CAS  PubMed  Google Scholar 

  70. Stepanova LA, et al. Flagellin-fused protein targeting M2e and HA2 induces potent humoral and T-cell responses and protects mice against various influenza viruses a subtypes. J Biomed Sci. 2018;25(1):33.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Blokhina EA, et al. Plant-produced recombinant influenza a virus candidate vaccine based on flagellin linked to conservative fragments of M2 protein and Hemagglutintin. Plan Theory. 2020;9(2):162.

    CAS  Google Scholar 

  72. Tanji H, et al. Toll-like receptor 8 senses degradation products of single-stranded RNA. Nat Struct Mol Biol. 2015;22(2):109–15.

    Article  CAS  PubMed  Google Scholar 

  73. Meyer T, et al. Resiquimod, a topical drug for viral skin lesions and skin cancer. Expert Opin Investig Drugs. 2013;22(1):149–59.

    Article  CAS  PubMed  Google Scholar 

  74. Van Hoeven N, et al. A formulated TLR7/8 agonist is a flexible, highly potent and effective adjuvant for pandemic influenza vaccines. Sci Rep. 2017;7(1):46426.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Smirnov D, et al. Vaccine adjuvant activity of 3M-052: an imidazoquinoline designed for local activity without systemic cytokine induction. Vaccine. 2011;29(33):5434–42.

    Article  CAS  PubMed  Google Scholar 

  76. Abhyankar MM, et al. Adjuvant composition and delivery route shape immune response quality and protective efficacy of a recombinant vaccine for Entamoeba histolytica. NPJ Vaccines. 2018;3(1):22.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Routhu NK, et al. SARS-CoV-2 RBD trimer protein adjuvanted with Alum-3M-052 protects from SARS-CoV-2 infection and immune pathology in the lung. Nat Communications. 2021;12(1):3587.

    Article  CAS  Google Scholar 

  78. Ella R, et al. Efficacy, safety, and lot-to-lot immunogenicity of an inactivated SARS-CoV-2 vaccine (BBV152): interim results of a randomised, double-blind, controlled, phase 3 trial. Lancet. 2021;398(10317):2173–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Dasari P, et al. Expression of toll-like receptors on B lymphocytes. Cell Immunol. 2005;236(1–2):140–5.

    Article  CAS  PubMed  Google Scholar 

  80. O’Neill LA, Bryant CE, Doyle SL. Therapeutic targeting of toll-like receptors for infectious and inflammatory diseases and cancer. Pharmacol Rev. 2009;61(2):177–97.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Vollmer J, et al. Characterization of three CpG oligodeoxynucleotide classes with distinct immunostimulatory activities. Eur J Immunol. 2004;34(1):251–62.

    Article  CAS  PubMed  Google Scholar 

  82. Ballas ZK, Rasmussen WL, Krieg AM. Induction of NK activity in murine and human cells by CpG motifs in oligodeoxynucleotides and bacterial DNA. J Immunol. 1996;157(5):1840–5.

    Article  CAS  PubMed  Google Scholar 

  83. Krug A, et al. Identification of CpG oligonucleotide sequences with high induction of IFN-α/β in plasmacytoid dendritic cells. Eur J Immunol. 2001;31(7):2154–63.

    Article  CAS  PubMed  Google Scholar 

  84. Verthelyi D, et al. Human peripheral blood cells differentially recognize and respond to two distinct CPG motifs. J Immunol. 2001;166(4):2372–7.

    Article  CAS  PubMed  Google Scholar 

  85. Hartmann G, Krieg AM. Mechanism and function of a newly identified CpG DNA motif in human primary B cells. J Immunol. 2000;164(2):944–53.

    Article  CAS  PubMed  Google Scholar 

  86. Mendez S, et al. Coinjection with CpG-containing immunostimulatory oligodeoxynucleotides reduces the pathogenicity of a live vaccine against cutaneous Leishmaniasis but maintains its potency and durability. Infect Immun. 2003;71(9):5121–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Lazarus R, et al. Immunogenicity and safety of inactivated whole virion Coronavirus vaccine with CpG (VLA2001) in healthy adults aged 18 to 55: a randomised phase 1 /2 clinical trial. Cold Spring Harbor Laboratory; 2021.

    Google Scholar 

  88. Bruns AM, Horvath CM. Activation of RIG-I-like receptor signal transduction. Crit Rev Biochem Mol Biol. 2012;47(2):194–206.

    Article  CAS  PubMed  Google Scholar 

  89. Yoneyama M, et al. Shared and unique functions of the DExD/H-box helicases RIG-I, MDA5, and LGP2 in antiviral innate immunity. J Immunol. 2005;175(5):2851–8.

    Article  CAS  PubMed  Google Scholar 

  90. Chow KT, Gale M Jr, Loo Y-M. RIG-I and other RNA sensors in antiviral immunity. Annu Rev Immunol. 2018;36(1):667–94.

    Article  CAS  PubMed  Google Scholar 

  91. Loo Y-M, Gale M. Immune signaling by RIG-I-like receptors. Immunity. 2011;34(5):680–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Jiang F, et al. Structural basis of RNA recognition and activation by innate immune receptor RIG-I. Nature. 2011;479(7373):423–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Hornung V, et al. 5′-Triphosphate RNA is the ligand for RIG-I. Science. 2006;314(5801):994–7.

    Article  PubMed  Google Scholar 

  94. Wu B, et al. Structural basis for dsRNA recognition, filament formation, and antiviral signal activation by MDA5. Cell. 2013;152(1-2):276–89.

    Article  CAS  PubMed  Google Scholar 

  95. Peisley A, et al. Kinetic mechanism for viral dsRNA length discrimination by MDA5 filaments. Proc Natl Acad Sci. 2012;109(49):E3340–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Luo D, et al. Structural insights into RNA recognition by RIG-I. Cell. 2011;147(2):409–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Bruns AM, Horvath CM. LGP2 synergy with MDA5 in RLR-mediated RNA recognition and antiviral signaling. Cytokine. 2015;74(2):198–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Beljanski V, et al. Enhanced influenza virus-like particle vaccination with a structurally optimized RIG-I agonist as adjuvant. J Virol. 2015;89(20):10612–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Atalis A, et al. Nanoparticle-delivered TLR4 and RIG-I agonists enhance immune response to SARS-CoV-2 subunit vaccine. J Control Release. 2022;347:476–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Goyal S, et al. The interaction of human pathogenic fungi with C-type lectin receptors. Front Immunol. 2018;9:1261.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Jin Y, Li P, Wang F. β-Glucans as potential immunoadjuvants: a review on the adjuvanticity, structure-activity relationship and receptor recognition properties. Vaccine. 2018;36(35):5235–44.

    Article  CAS  PubMed  Google Scholar 

  102. Liu Y, et al. Adjuvanticity of β -glucan for vaccine against trichinella spiralis. Front Cell Develop Biol. 2021;9:1–8.

    Google Scholar 

  103. Davidsen J, et al. Characterization of cationic liposomes based on dimethyldioctadecylammonium and synthetic cord factor from M. tuberculosis (trehalose 6, 6′-dibehenate)—a novel adjuvant inducing both strong CMI and antibody responses. Biochimica et Biophysica Acta (BBA)-Biomembranes. 2005;1718(1-2):22–31.

    Article  CAS  PubMed  Google Scholar 

  104. Decout A, et al. Rational design of adjuvants targeting the C-type lectin Mincle. Proc Natl Acad Sci. 2017;114(10):2675–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Geddes K, Magalhães JG, Girardin SE. Unleashing the therapeutic potential of NOD-like receptors. Nat Rev Drug Discov. 2009;8(6):465–79.

    Article  CAS  PubMed  Google Scholar 

  106. Benko S, Philpott DJ, Girardin SE. The microbial and danger signals that activate Nod-like receptors. Cytokine. 2008;43(3):368–73.

    Article  CAS  PubMed  Google Scholar 

  107. Pétrilli V, et al. The inflammasome: a danger sensing complex triggering innate immunity. Curr Opin Immunol. 2007;19(6):615–22.

    Article  PubMed  Google Scholar 

  108. Philpott DJ, et al. NOD proteins: regulators of inflammation in health and disease. Nat Rev Immunol. 2014;14(1):9–23.

    Article  CAS  PubMed  Google Scholar 

  109. Werts C, et al. Nod1 and Nod2 induce CCL5/RANTES through the NF-κB pathway. Eur J Immunol. 2007;37(9):2499–508.

    Article  CAS  PubMed  Google Scholar 

  110. Gotoh T, et al. Studies on a new immunoactive peptide, FK-156. II. Fermentation, extraction and chemical and biological characterization. J Antibiot. 1982;35(10):1286–92.

    Article  CAS  Google Scholar 

  111. Yoo YC, et al. Adjuvant activity of muramyl dipeptide derivatives to enhance immunogenicity of a hantavirus-inactivated vaccine. Vaccine. 1998;16(2):216–24.

    Article  CAS  PubMed  Google Scholar 

  112. Desmet CJ, Ishii KJ. Nucleic acid sensing at the interface between innate and adaptive immunity in vaccination. Nat Rev Immunol. 2012;12(7):479–91.

    Article  CAS  PubMed  Google Scholar 

  113. Van Herck S, Feng B, Tang L. Delivery of STING agonists for adjuvanting subunit vaccines. Adv Drug Deliv Rev. 2021;179:114020.

    Article  PubMed  Google Scholar 

  114. Ebensen T, et al. The bacterial second messenger cyclic diGMP exhibits potent adjuvant properties. Vaccine. 2007;25(8):1464–9.

    Article  CAS  PubMed  Google Scholar 

  115. Karaolis DKR, et al. Bacterial c-di-GMP Is an Immunostimulatory Molecule. J Immunol. 2007;178(4):2171–81.

    Article  CAS  PubMed  Google Scholar 

  116. Ishikawa H, Barber GN. STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature. 2008;455(7213):674–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Burdette DL, Vance RE. STING and the innate immune response to nucleic acids in the cytosol. Nat Immunol. 2013;14(1):19–26.

    Article  CAS  PubMed  Google Scholar 

  118. Wang J, Li P, Wu MX. Natural STING agonist as an “ideal” adjuvant for cutaneous vaccination. J Investig Dermatol. 2016;136(11):2183–91.

    Article  CAS  PubMed  Google Scholar 

  119. Humphries F, et al. A diamidobenzimidazole STING agonist protects against SARS-CoV-2 infection. Sci Immunol. 2021;6(59):eabi9002.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Liu Z, et al. A novel STING agonist-adjuvanted pan-sarbecovirus vaccine elicits potent and durable neutralizing antibody and T cell responses in mice, rabbits and NHPs. Cell Res. 2022;32(3):269–87.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Oyewumi MO, Kumar A, Cui Z. Nano-microparticles as immune adjuvants: correlating particle sizes and the resultant immune responses. Expert Rev Vaccines. 2010;9(9):1095–107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Smith DM, Simon JK, Baker JR Jr. Applications of nanotechnology for immunology. Nat Rev Immunol. 2013;13(8):592–605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Behzadi M, et al. Iron nanoparticles as novel vaccine adjuvants. Eur J Pharm Sci. 2021;159:105718.

    Article  CAS  PubMed  Google Scholar 

  124. Zhu M, Wang R, Nie G. Applications of nanomaterials as vaccine adjuvants. Hum Vaccin Immunother. 2014;10(9):2761–74.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Kheirollahpour M, et al. Nanoparticles and vaccine development. Pharm Nanotechnol. 2020;8(1):6–21.

    Article  CAS  PubMed  Google Scholar 

  126. Shah RR, et al. The impact of size on particulate vaccine adjuvants. Nanomedicine (Lond). 2014;9(17):2671–81.

    Article  CAS  PubMed  Google Scholar 

  127. Dai S, Wang H, Deng F. Advances and challenges in enveloped virus-like particle (VLP)-based vaccines. J Immunol Sci. 2018;2(2):36–41.

    Google Scholar 

  128. Lu Y, Liu G. Nano alum: a new solution to the new challenge. Hum Vaccin Immunother. 2022;18(5):2060667.

    Article  PubMed  PubMed Central  Google Scholar 

  129. O’Hagan DT, Lodaya RN, Lofano G. The continued advance of vaccine adjuvants – ‘we can work it out’. Semin Immunol. 2020;50:101426.

    Article  PubMed  Google Scholar 

  130. Sia ZR, et al. A liposome-displayed hemagglutinin vaccine platform protects mice and ferrets from heterologous influenza virus challenge. Proc Natl Acad Sci. 2021;118(22):e2025759118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Tan J, et al. Understanding structure–function relationships of nanoadjuvants for enhanced cancer vaccine efficacy. Adv Funct Mater. 2022;32(16):2111670.

    Article  CAS  Google Scholar 

  132. Chen Y-C, et al. Nanotechnologies applied in biomedical vaccines. IntechOpen; 2016.

    Google Scholar 

  133. Petkar KC, et al. An overview of nanocarrier-based adjuvants for vaccine delivery. Pharmaceutics. 2021;13(4):455.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Feng C, et al. Emerging vaccine nanotechnology: from defense against infection to sniping cancer. Acta Pharm Sin B. 2022;12(5):2206–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Moyer TJ, Zmolek AC, Irvine DJ. Beyond antigens and adjuvants: formulating future vaccines. J Clin Invest. 2016;126(3):799–808.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Pati R, Shevtsov M, Sonawane A. Nanoparticle vaccines against infectious diseases. Front Immunol. 2018;9:2224.

    Article  PubMed  PubMed Central  Google Scholar 

  137. Look M, et al. Application of nanotechnologies for improved immune response against infectious diseases in the developing world. Adv Drug Deliv Rev. 2010;62(4-5):378–93.

    Article  CAS  PubMed  Google Scholar 

  138. Monfardini C, Veronese FM. Stabilization of substances in circulation. Bioconjug Chem. 1998;9(4):418–50.

    Article  CAS  PubMed  Google Scholar 

  139. Garg A, Dewangan HK. Nanoparticles as adjuvants in vaccine delivery. Crit Rev Ther Drug Carrier Syst. 2020;37(2):183–204.

    Article  PubMed  Google Scholar 

  140. Wei LQ, et al. The application of high-throughput technologies for the study of microbiome and cancer. Front Genet. 2021;12:699793.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Batista-Duharte A, Martínez DT, Carlos IZ. Efficacy and safety of immunological adjuvants. Where is the cut-off? Biomed Pharmacother. 2018;105:616–24.

    Article  CAS  PubMed  Google Scholar 

  142. Rothstein E, et al. Nodule at injection site as an adverse event following immunization: case definition and guidelines for data collection, analysis, and presentation. Vaccine. 2004;22(5-6):575–85.

    Article  PubMed  Google Scholar 

  143. Shardlow E, Mold M, Exley C. Unraveling the enigma: elucidating the relationship between the physicochemical properties of aluminium-based adjuvants and their immunological mechanisms of action. Allergy, Asthma Clin Immunol. 2018;14(1):1–19.

    Google Scholar 

  144. Batista-Duharte A, et al. An approach to local immunotoxicity induced by adjuvanted vaccines. Int Immunopharmacol. 2013;17(3):526–36.

    Article  CAS  PubMed  Google Scholar 

  145. Gupta RK, et al. Adjuvants—a balance between toxicity and adjuvanticity. Vaccine. 1993;11(3):293–306.

    Article  CAS  PubMed  Google Scholar 

  146. Nazarizadeh A, et al. Aluminium nanoparticles as efficient adjuvants compared to their microparticle counterparts: current progress and perspectives. Int J Mol Sci. 2022;23(9):4707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Guerrini G, et al. Physicochemical characterization cascade of nanoadjuvant–antigen systems for improving vaccines. Vaccine. 2021;9(6):544.

    Article  CAS  Google Scholar 

  148. RTS,S Clinical Trials Partnership. Efficacy and safety of RTS, S/AS01 malaria vaccine with or without a booster dose in infants and children in Africa: final results of a phase 3, individually randomised, controlled trial. Lancet. 2015;386(9988):31–45.

    Article  Google Scholar 

  149. Coler RN, et al. The TLR-4 agonist adjuvant, GLA-SE, improves magnitude and quality of immune responses elicited by the ID93 tuberculosis vaccine: first-in-human trial. NPJ Vaccines. 2018;3(1):34.

    Article  PubMed  PubMed Central  Google Scholar 

  150. Gu P, et al. Polyethylenimine-coated PLGA nanoparticles-encapsulated Angelica sinensis polysaccharide as an adjuvant for H9N2 vaccine to improve immune responses in chickens compared to Alum and oil-based adjuvants. Vet Microbiol. 2020;251:108894.

    Article  CAS  PubMed  Google Scholar 

  151. Huang T, et al. Chitosan-DNA nanoparticles enhanced the immunogenicity of multivalent DNA vaccination on mice against Trueperella pyogenes infection. J Nanobiotechnol. 2018;16(1):8.

    Article  Google Scholar 

  152. Luan N, et al. Ionizable lipid nanoparticles enhanced the synergistic adjuvant effect of CpG ODNs and QS21 in a varicella zoster virus glycoprotein E subunit vaccine. Pharmaceutics. 2022;14(5):973.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Van Hoeven N, et al. A combination of TLR-4 agonist and saponin adjuvants increases antibody diversity and protective efficacy of a recombinant West Nile virus antigen. NPJ Vaccines. 2018;3(1):1–11.

    Google Scholar 

  154. Hoseinpur R, et al. Chitosan nanoparticles containing fusion protein (Hspx–PPE44–EsxV) and resiquimod adjuvant (HPERC) as a novel booster vaccine for mycobacterium tuberculosis. J Biomater Appl. 2022;37(1):40–7.

    Article  CAS  PubMed  Google Scholar 

  155. Luan N, et al. LNP-CpG ODN-adjuvanted varicella-zoster virus glycoprotein E induced comparable levels of immunity with Shingrix™ in VZV-primed mice. Virol Sin. 2022;37(5):731–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Barman S, et al. Shaping neonatal immunization by tuning the delivery of synergistic adjuvants via nanocarriers. ACS Chem Biol. 2022;17(9):2559–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Van Haren SD, et al. CAF08 adjuvant enables single dose protection against respiratory syncytial virus infection in murine newborns. Nat Commun. 2022;13(1):1–14.

    Google Scholar 

  158. Tazaki T, et al. Shape-dependent adjuvanticity of nanoparticle-conjugated RNA adjuvants for intranasal inactivated influenza vaccines. RSC Adv. 2018;8(30):16527–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Bozzuto G, Molinari A. Liposomes as nanomedical devices. Int J Nanomedicine. 2015;10:975–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Alving CR, et al. Liposomal adjuvants for human vaccines. Expert Opin Drug Deliv. 2016;13(6):807–16.

    Article  CAS  PubMed  Google Scholar 

  161. Didierlaurent AM, et al. Adjuvant system AS01: helping to overcome the challenges of modern vaccines. Expert Rev Vaccines. 2017;16(1):55–63.

    Article  CAS  PubMed  Google Scholar 

  162. Alving CR, et al. Army Liposome Formulation (ALF) family of vaccine adjuvants. Expert Rev Vaccines. 2020;19(3):279–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Rao M, Peachman KK, Alving CR. Liposome formulations as adjuvants for vaccines. Curr Top Microbiol Immunol. 2021;433:1–28.

    CAS  PubMed  Google Scholar 

  164. Tandrup Schmidt S, et al. Liposome-based adjuvants for subunit vaccines: formulation strategies for subunit antigens and Immunostimulators. Pharmaceutics. 2016;8(1):7.

    Article  PubMed  PubMed Central  Google Scholar 

  165. Wang YQ, et al. MPL adjuvant contains competitive antagonists of human TLR4. Front Immunol. 2020;11:577823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Wang X, Ishida T, Kiwada H. Anti-PEG IgM elicited by injection of liposomes is involved in the enhanced blood clearance of a subsequent dose of PEGylated liposomes. J Control Release. 2007;119(2):236–44.

    Article  CAS  PubMed  Google Scholar 

  167. Sjölander A, Cox JC, Barr IG. ISCOMs: an adjuvant with multiple functions. J Leukoc Biol. 1998;64(6):713–23.

    Article  PubMed  Google Scholar 

  168. Cibulski S, et al. IMXQB-80: a Quillaja brasiliensis saponin-based nanoadjuvant enhances Zika virus specific immune responses in mice. Vaccine. 2021;39(3):571–9.

    Article  CAS  PubMed  Google Scholar 

  169. Cibulski S, et al. Zika virus envelope domain III recombinant protein delivered with saponin-based Nanoadjuvant from Quillaja brasiliensis enhances anti-zika immune responses, including neutralizing antibodies and splenocyte proliferation. Front Immunol. 2021;12:632714.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Rivera-Patron M, et al. ISCOM-like nanoparticles formulated with Quillaja brasiliensis saponins are promising adjuvants for seasonal influenza vaccines. Vaccines (Basel). 2021;9(11):1350.

    Article  CAS  PubMed  Google Scholar 

  171. Poon C, Patel AA. Organic and inorganic nanoparticle vaccines for prevention of infectious diseases. Nano Express. 2020;1(1):012001.

    Article  Google Scholar 

  172. Felnerova D, et al. Liposomes and virosomes as delivery systems for antigens, nucleic acids and drugs. Curr Opin Biotechnol. 2004;15(6):518–29.

    Article  CAS  PubMed  Google Scholar 

  173. Herzog C, et al. Eleven years of Inflexal V-a virosomal adjuvanted influenza vaccine. Vaccine. 2009;27(33):4381–7.

    Article  CAS  PubMed  Google Scholar 

  174. HEPLISAV-B. 2020/05/06/Wed, − 15:31 [cited 2022]. 2020. Available from: https://www.fda.gov/vaccines-blood-biologics/vaccines/heplisav-b.

  175. Grego EA, et al. Polymeric nanoparticle-based vaccine adjuvants and delivery vehicles. Nanoparticles for Rational Vaccine Design. 2020: 29–76.

    Google Scholar 

  176. Kumari A, Yadav SK, Yadav SC. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B: Biointerfaces. 2010;75(1):1–18.

    Article  CAS  PubMed  Google Scholar 

  177. Ong GH, et al. Exploration of pattern recognition receptor agonists as candidate adjuvants. Front Cell Infect Microbiol. 2021:968(11).

    Google Scholar 

  178. Scott EA, et al. Dendritic cell activation and T cell priming with adjuvant-and antigen-loaded oxidation-sensitive polymersomes. Biomaterials. 2012;33(26):6211–9.

    Article  CAS  PubMed  Google Scholar 

  179. Weiss AM, et al. Immunostimulatory polymers as adjuvants, immunotherapies, and delivery systems. Macromolecules. 2022;55(16):6913–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Kelly SH, et al. Titrating polyarginine into nanofibers enhances cyclic-dinucleotide adjuvanticity in vitro and after sublingual immunization. ACS Biomater Sci Eng. 2021;7(5):1876–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Li AW, et al. A facile approach to enhance antigen response for personalized cancer vaccination. Nat Mater. 2018;17(6):528–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Dowling DJ, et al. Toll-like receptor 8 agonist nanoparticles mimic immunomodulating effects of the live BCG vaccine and enhance neonatal innate and adaptive immune responses. J Allergy Clin Immunol. 2017;140(5):1339–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Liang J, et al. Nanoparticle-enhanced chemo-immunotherapy to trigger robust antitumor immunity. Sci Adv. 2020;6(35):eabc3646.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Trimaille T, Verrier B. Micelle-based adjuvants for subunit vaccine delivery. Vaccine. 2015;3(4):803–13.

    Article  CAS  Google Scholar 

  185. Jiménez-Sánchez G, et al. Preparation and in vitro evaluation of imiquimod loaded polylactide-based micelles as potential vaccine adjuvants. Pharm Res. 2015;32(1):311–20.

    Article  PubMed  Google Scholar 

  186. Jain AK, et al. PEG–PLA–PEG block copolymeric nanoparticles for oral immunization against hepatitis B. Int J Pharm. 2010;387(1–2):253–62.

    Article  CAS  PubMed  Google Scholar 

  187. Heffernan MJ, Murthy N. Disulfide-crosslinked polyion micelles for delivery of protein therapeutics. Ann Biomed Eng. 2009;37(10):1993–2002.

    Article  PubMed  Google Scholar 

  188. Seyfoori A, et al. Emerging advances of nanotechnology in drug and vaccine delivery against viral associated respiratory infectious diseases (VARID). Int J Mol Sci. 2021;22(13):6937.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Zhao L, et al. O/W nanoemulsion as an adjuvant for an inactivated H3N2 influenza vaccine: based on particle properties and mode of carrying. Int J Nanomedicine. 2020;15:2071.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. O’Hagan DT, et al. “World in motion”–emulsion adjuvants rising to meet the pandemic challenges. NPJ Vaccines. 2021;6(1):1–15.

    Article  Google Scholar 

  191. Ascarated S. Safety data of Montanide ISA 51VG and Montanide ISA 720 VG in human therapeutic vaccines. J Immunother Cancer. 2009. Lippincott Williams & Wilkins 530 Walnut St, Philadelphia, PA 19106-3621 USA.

    Google Scholar 

  192. Koyasu S, Moro K. Type 2 innate immune responses and the natural helper cell. Immunology. 2011;132(4):475–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Fan J, et al. Advances in infectious disease vaccine adjuvants. Vaccine. 2022;10(7):1120.

    Article  CAS  Google Scholar 

  194. Wei Y, et al. Effect of 2 emulsion-based adjuvants on the structure and thermal stability of Staphylococcus aureus alpha-toxin. J Pharm Sci. 2018;107(9):2325–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Abbasi S, Kajimoto K, Harashima H. Elimination of the biphasic pharmacodynamics of 15d-PGJ2 by controlling its release from a nanoemulsion. Int J Nanomedicine. 2016;11:2685.

    CAS  PubMed  PubMed Central  Google Scholar 

  196. Bennett B, et al. A comparison of commercially available adjuvants for use in research. J Immunol Methods. 1992;153(1-2):31–40.

    Article  CAS  PubMed  Google Scholar 

  197. Stils HF Jr. Adjuvants and antibody production: dispelling the myths associated with Freund’s complete and other adjuvants. ILAR J. 2005;46(3):280–93.

    Article  Google Scholar 

  198. Mullerad J, et al. The immunogenicity of mycobacterium paratuberculosis 85B antigen. Med Microbiol Immunol. 2002;190(4):179–87.

    Article  CAS  PubMed  Google Scholar 

  199. Cauwelaert ND, et al. The TLR4 agonist vaccine adjuvant, GLA-SE, requires canonical and atypical mechanisms of action for TH1 induction. PLoS One. 2016;11(1):e0146372.

    Article  PubMed Central  Google Scholar 

  200. Hess KL, Medintz IL, Jewell CM. Designing inorganic nanomaterials for vaccines and immunotherapies. Nano Today. 2019;27:73–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Niikura K, et al. Gold nanoparticles as a vaccine platform: influence of size and shape on immunological responses in vitro and in vivo. ACS Nano. 2013;7(5):3926–38.

    Article  CAS  PubMed  Google Scholar 

  202. Shen CC, et al. A role of cellular glutathione in the differential effects of iron oxide nanoparticles on antigen-specific T cell cytokine expression. Int J Nanomedicine. 2011;6:2791–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  203. Neto LMM, et al. Specific T cell induction using iron oxide based nanoparticles as subunit vaccine adjuvant. Hum Vaccin Immunother. 2018;14(11):2786–801.

    PubMed  PubMed Central  Google Scholar 

  204. Pusic K, et al. Iron oxide nanoparticles as a clinically acceptable delivery platform for a recombinant blood-stage human malaria vaccine. FASEB J. 2013;27(3):1153–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Mercuri LP, et al. Ordered mesoporous silica SBA-15: a new effective adjuvant to induce antibody response. Small. 2006;2(2):254–6.

    Article  CAS  PubMed  Google Scholar 

  206. Yu M, et al. Hyaluronic acid modified mesoporous silica nanoparticles for targeted drug delivery to CD44-overexpressing cancer cells. Nanoscale. 2013;5(1):178–83.

    Article  CAS  PubMed  Google Scholar 

  207. Xia T, et al. Polyethyleneimine coating enhances the cellular uptake of mesoporous silica nanoparticles and allows safe delivery of siRNA and DNA constructs. ACS Nano. 2009;3(10):3273–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Huang X, Townley HE. An assessment of mesoporous silica nanoparticle architectures as antigen carriers. Pharmaceutics. 2020;12(3):294.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Wang Y, et al. Mesoporous silica nanoparticles in drug delivery and biomedical applications. Nanomedicine. 2015;11(2):313–27.

    Article  CAS  PubMed  Google Scholar 

  210. Zhao K, et al. Synthesis, characterization, and immune efficacy of layered double hydroxide@SiO2 nanoparticles with shell-core structure as a delivery carrier for Newcastle disease virus DNA vaccine. Int J Nanomedicine. 2015;10:2895–911.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Wang J, et al. The enhanced immune response of hepatitis B virus DNA vaccine using SiO2@LDH nanoparticles as an adjuvant. Biomaterials. 2014;35(1):466–78.

    Article  CAS  PubMed  Google Scholar 

  212. Mahony D, et al. In vivo delivery of bovine viral diahorrea virus, E2 protein using hollow mesoporous silica nanoparticles. Nanoscale. 2014;6(12):6617–26.

    Article  CAS  PubMed  Google Scholar 

  213. Chan WC, et al. Luminescent quantum dots for multiplexed biological detection and imaging. Curr Opin Biotechnol. 2002;13(1):40–6.

    Article  CAS  PubMed  Google Scholar 

  214. Chan WCW, Nie S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science. 1998;281(5385):2016–8.

    Article  CAS  PubMed  Google Scholar 

  215. Sen D, et al. Quantum dots for tracking dendritic cells and priming an immune response in vitro and in vivo. PLoS One. 2008;3(9):e3290.

    Article  PubMed  PubMed Central  Google Scholar 

  216. Chen H-H, et al. Development of antiviral carbon quantum dots that target the Japanese encephalitis virus envelope protein. J Biol Chem. 2022;298(6):101957.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharan Bobbala .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Misra, B., Hughes, K.A., Bobbala, S. (2023). Nano-Adjuvants. In: Patravale, V.B., Date, A.A., Jindal, A.B. (eds) Nanomedicines for the Prevention and Treatment of Infectious Diseases. AAPS Advances in the Pharmaceutical Sciences Series, vol 56. Springer, Cham. https://doi.org/10.1007/978-3-031-39020-3_10

Download citation

Publish with us

Policies and ethics