Skip to main content

The Production of Therapeutic Radionuclides

  • Chapter
  • First Online:
Radiopharmaceutical Therapy

Abstract

Most medicinal radionuclides are not naturally occurring and must therefore be produced via nuclear reactions. An understanding of both nuclear reactions and the decay properties of radionuclides can guide the methods for the production of these important tools. Nuclear reactions can be induced with neutrons, charged particles, or photons in both nuclear reactors and particle accelerators. Most therapeutic radionuclides are produced in nuclear reactors that bombard stationary target material with either fast-moving or thermal neutrons produced from fission events, resulting in neutron-rich radionuclides that decay via β-emission. Particle accelerators can produce radionuclides through the bombardment of target materials with charged particles (which can be protons or heavier nuclei) and can produce both β- and α-emitting radionuclides. Another route to therapeutic radionuclides is through the decay of long-lived radionuclides such as 232U, 232Th, and 233U, upon which chemically distinct daughters can be separated for incorporation into radiopharmaceuticals. The rate of the production of a given radionuclide depends on the cross section of the nuclear reaction on the target material, the flux of particles, and the rate of decay of the radionuclide produced. The former property, the cross section, is the probability of the nuclear reaction occurring and is dependent on the type of incident particle, the energy of the incident particle, and the target material. The target material for the nuclear reaction will impact both its initial production and downstream chemistry. Targets must remain stable throughout the irradiation, and the parameters for bombardment must be optimized for both high-purity production and downstream chemistry. The production of high-purity therapeutic radionuclides may involve the use of expensive enriched starting materials that require additional handling for efficient recycling methods. Finally, the production of elementally matched theranostic pairs is of especially high interest due to their identical chemical properties and the identical in vivo behavior of true matched-pair radiopharmaceuticals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yordanova A, Eppard E, Kürpig S, Bundschuh RA, Schönberger S, Gonzalez-Carmona M, et al. Theranostics in nuclear medicine practice. Onco Targets Ther. 2017;10:4821–8.

    Article  PubMed  PubMed Central  Google Scholar 

  2. NuDat 2.8 Brookhaven National Laboratory website. https://www.nndc.bnl.gov/nudat2/. Data extracted June 2, 2021. Accessed January 1, 2022 [Internet].

  3. Vimalnath KV, Shetty P, Rajeswari A, Chirayil V, Chakraborty S, Dash A. Reactor production of 32P for medical applications: an assessment of 32S(n,p)32P and 31P(n,γ)32P methods. J Radioanal Nucl Chem. 2014;301(2):555–65.

    Article  CAS  Google Scholar 

  4. Chernysheva M, Loveless SC, Brossard T, Becker K, Cingoranelli S, Aluicio-Sarduy E, et al. Accelerator production of scandium radioisotopes: Sc-43, Sc-44, and Sc-47. Curr Radiopharm. 2021;14(4):359–73.

    Article  CAS  PubMed  Google Scholar 

  5. Mou L, Martini P, Pupillo G, Cieszykowska I, Cutler CS, Mikołajczak R. 67Cu production capabilities: a mini review. Molecules. 2022;27(5):1501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hovhannisyan GH, Bakhshiyan TM, Dallakyan RK. Photonuclear production of the medical isotope 67Cu. Nucl Instrum Methods Phys Res B Beam Interact Mater At. 2021;498:48–51.

    Article  CAS  Google Scholar 

  7. Bhike M, Fallin B, Krishichayan TW. Measurement of the neutron-capture cross section of 76Ge and 74Ge below 15 MeV and its relevance to 0νββ decay searches of 76Ge. Phys Lett B. 2015;741:150–4.

    Article  CAS  Google Scholar 

  8. Ellison PA, Olson AP, Barnhart TE, Hoffman SLV, Reilly SW, Makvandi M, et al. Improved production of (76)Br, (77)Br and (80m)Br via CoSe cyclotron targets and vertical dry distillation. Nucl Med Biol. 2020;80–81:32–6.

    Article  PubMed  Google Scholar 

  9. Vereshchagin YI, Markovskii DV, Pavshuk VA, Ponomarev-Stepnoi NN, Udovenko AN, Khvostionov VE, et al. 89Sr production in a reactor with solution fuel. At Energy. 2006;100(5):350–8.

    Article  CAS  Google Scholar 

  10. Therapeutic Radionuclide Generators. 90Sr/90Y and 188W/188Re generators. Vienna: International Atomic Energy Agency; 2009.

    Google Scholar 

  11. Jai W, et al. Platinum Metals Rev. 2000;44:50.

    Google Scholar 

  12. Tárkányi F, Hermanne A, Király B, Takács S, Ditrói F, Csikai J, et al. New cross-sections for production of 103Pd; review of charged particle production routes. Appl Radiat Isot. 2009;67(9):1574–81.

    Article  PubMed  Google Scholar 

  13. Maslov OD, Starodub GY, Vostokin GK, Gustova MV, Dmitriev SN, Shvetsov VN, et al. Production of 117mSn with high specific activity by cyclotron. Appl Radiat Isot. 2011;69(7):965–8.

    Article  CAS  PubMed  Google Scholar 

  14. Elom Achoribo AS, Akaho EHK, Nyarko BJB, Osae Shiloh KD, Odame Duodu G, Gibrilla A. Feasibility study for production of I-131 radioisotope using MNSR research reactor. Appl Radiat Isot. 2012;70(1):76–80.

    Article  CAS  PubMed  Google Scholar 

  15. Grummitt WE, Wilkinson G. Fission products of U235. Nature. 1946;158(4005):163.

    Article  CAS  PubMed  Google Scholar 

  16. Allen BJ, et al. Appl Radiat Isot. 2001;54:53–8.

    Article  CAS  PubMed  Google Scholar 

  17. Lehenberger S, et al. Nucl Med Biol. 2011;38:917–24.

    Article  CAS  PubMed  Google Scholar 

  18. Karadag M. Measurement of thermal neutron cross section and resonance integral for 148Nd(n,γ)149Nd reaction by using a 55Mn monitor. Ann Nucl Energy. 2013;62:274–9.

    Article  CAS  Google Scholar 

  19. Uddin MS, Chowdhury MH, Hossain SM, Latif SA, Islam MA, Hafiz MA, et al. Thermal neutron capture cross sections for the 152Sm(n,γ)153Sm and 154Sm(n,γ)155Sm reactions at 0.0536eV energy. Nucl Instrum Methods Phys Res B Beam Interact Mater At. 2008;266(22):4855–61.

    Article  CAS  Google Scholar 

  20. Lahiri S, Volkers KJ, Wierczinski B. Production of 166Ho through 164Dy(n,γ)165Dy(n, γ)166Dy(β−)166Ho and separation of 166Ho. Appl Radiat Isot. 2004;61(6):1157–61.

    Article  CAS  PubMed  Google Scholar 

  21. Dash A, et al. Nucl Med Mol Imaging. 2015;49:85–107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Moustapha ME, Ehrhardt GJ, Smith CJ, Szajek LP, Eckelman WC, Jurisson SS. Preparation of cyclotron-produced 186Re and comparison with reactor-produced 186Re and generator-produced 188Re for the labeling of bombesin. Nucl Med Biol. 2006;33(1):81–9.

    Article  CAS  PubMed  Google Scholar 

  23. Knapp FF Jr, Mirzadeh S, Beets AL, Du M. Production of therapeutic radioisotopes in the ORNL HighFlux Isotope Reactor (HFIR) for applications in nuclear medicine, oncologyandinterventional cardiology. J Radioanal Nucl Chem. 2005;263(2):503–9.

    Article  CAS  Google Scholar 

  24. McNeil BL, Robertson AKH, Fu W, Yang H, Hoehr C, Ramogida CF, et al. Production, purification, and radiolabeling of the (203)Pb/(212)Pb theranostic pair. EJNMMI Radiopharm Chem. 2021;6(1):6.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Engle JW. The production of ac-225. Curr Radiopharm. 2018;11(3):173–9.

    Article  CAS  PubMed  Google Scholar 

  26. Hermanne A, Tárkányi F, Takács S, Szücs Z, Shubin YN, Dityuk AI. Experimental study of the cross-sections of alpha-particle induced reactions on 209Bi. Appl Radiat Isot. 2005;63(1):1–9.

    Article  CAS  PubMed  Google Scholar 

  27. Hashimoto T, et al. Rad Chem Radioanel Lett. 1977;28:385–91.

    CAS  Google Scholar 

  28. Morgenstern A, et al. Anal Chem. 2008;80:8763–70.

    Article  CAS  PubMed  Google Scholar 

  29. Ehmann WD, Vance D. Radiochemistry and nuclear methods of analysis. New York: Wiley; 1991.

    Google Scholar 

  30. Chadwick MB, Herman M, Obložinský P, Dunn ME, Danon Y, Kahler AC, et al. ENDF/B-VII.1 nuclear data for science and technology: cross sections, Covariances, fission product yields and decay data. Nucl Data Sheets. 2011;112(12):2887–996.

    Article  CAS  Google Scholar 

  31. Qaim SM. Nuclear data for production and medical application of radionuclides: present status and future needs. Nucl Med Biol. 2017;44:31–49.

    Article  CAS  PubMed  Google Scholar 

  32. Wooten AL, Lewis BC, Lapi SE. Cross-sections for (p,x) reactions on natural chromium for the production of 52,52m,54Mn radioisotopes. Appl Radiat Isot. 2015;96:154–61.

    Article  CAS  PubMed  Google Scholar 

  33. International Atomic Energy Agency. Manual for reactor produced radioisotopes. Vienna: International Atomic Energy Agency; 2003.

    Google Scholar 

  34. Cyclotron Produced Radionuclides. Principles and practice. Vienna: International Atomic Energy Agency; 2009.

    Google Scholar 

  35. Muranaka RG. Conversion of research reactors to low-enrichment uranium fuels. IAEA Bull. 1983;25(1):18–21.

    CAS  Google Scholar 

  36. Roig O, Jandel M, Méot V, Bond EM, Bredeweg TA, Couture AJ, et al. Radiative neutron capture cross sections on $^{176}\mathrm{ Lu}$ at DANCE. Phys Rev C. 2016;93(3):034602.

    Article  Google Scholar 

  37. Synowiecki MA, Perk LR, Nijsen JFW. Production of novel diagnostic radionuclides in small medical cyclotrons. EJNMMI Radiopharm Chem. 2018;3(1):3.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Hassan AE, Lukyanov S, Kalpakchieva R, Penionzhkevich YE, Stabatyan R, Vinsour J, et al. Investigation of nuclear fusion in reactions of 4,6 He and 7 Li on 208 Pb and 208 Bi nuclei. Bull Russ Acad Sci Phys. 2006;7011:1558–63.

    Google Scholar 

  39. Patel HB, Shah DJ, Singh NL. Study of (a,xn) reactions on 169Tm, 181Ta and 209Bi up to 70MeV. Nuovo Cimento. 1999;112:1439.

    Google Scholar 

  40. Ramler WJ, Wing J, Henderson DJ, Huizenga JR. Excitation functions of bismuth and Lead. Phys Rev. 1959;114(1):154–62.

    Article  CAS  Google Scholar 

  41. Starovoitova VN, Tchelidze L, Wells DP. Production of medical radioisotopes with linear accelerators. Appl Radiat Isot. 2014;85:39–44.

    Article  CAS  PubMed  Google Scholar 

  42. Obodovskiy I. Chapter 19 – Neutron sources. In: Obodovskiy I, editor. Radiation. Elsevier; 2019. p. 289–92.

    Chapter  Google Scholar 

  43. Howard S, Starovoitova VN. Target optimization for the photonuclear production of radioisotopes. Appl Radiat Isot. 2015;96:162–7.

    Article  CAS  PubMed  Google Scholar 

  44. Hovhannisyan GH, Bakhshiyan TM, Balabekyan AR, Kerobyan IA. Production of 47Sc in photonuclear reactions on natTi targets at the bremsstrahlung endpoint energy of 30 and 40 MeV. Appl Radiat Isot. 2022;182:110138.

    Article  CAS  PubMed  Google Scholar 

  45. Hussein EMA. Chapter three – cross sections. In: Hussein EMA, editor. Radiation mechanics. Oxford: Elsevier Science Ltd; 2007. p. 153–245.

    Chapter  Google Scholar 

  46. Habs D, Köster U. Production of medical radioisotopes with high specific activity in photonuclear reactions with γ-beams of high intensity and large brilliance. Appl Phys B. 2011;103(2):501–19.

    Article  CAS  Google Scholar 

  47. Robertson AKH, Ramogida CF, Schaffer P, Radchenko V. Development of (225)Ac radiopharmaceuticals: TRIUMF perspectives and experiences. Curr Radiopharm. 2018;11(3):156–72.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Boschi A, Uccelli L, Pasquali M, Duatti A, Taibi A, Pupillo G, et al. 188W/88 Re generator system and its therapeutic applications. J Chem. 2014;2014:529406.

    Article  Google Scholar 

  49. Kokov KV, Egorova BV, German MN, Klabukov ID, Krasheninnikov ME, Larkin-Kondrov AA, et al. (212)Pb: production approaches and targeted therapy applications. Pharmaceutics. 2022;14(1)

    Google Scholar 

  50. Production of long lived parent radionuclides for generators. 68Ge, 82Sr, 90Sr and 188W. Vienna: International Atomic Energy Agency; 2010.

    Google Scholar 

  51. Lebeda O, Jiran R, Ráliš J, Štursa J. A new internal target system for production of 211At on the cyclotron U-120M. Appl Radiat Isot. 2005;63(1):49–53.

    Article  CAS  PubMed  Google Scholar 

  52. Burns JD, Tereshatov EE, Avila G, Glennon KJ, Hannaman A, Lofton KN, et al. Rapid recovery of at-211 by extraction chromatography. Sep Purif Technol. 2021;256:117794.

    Article  CAS  Google Scholar 

  53. Guérard F, Gestin J-F, Brechbiel MW. Production of [(211)At]-astatinated radiopharmaceuticals and applications in targeted α-particle therapy. Cancer Biother Radiopharm. 2013;28(1):1–20.

    PubMed  PubMed Central  Google Scholar 

  54. Ziegler JFBJPZMD. SRIM, the stopping and range of ions in matter. Chester: SRIM Co.; 2008.

    Google Scholar 

  55. Peeples JL, Stokely MH, Michael DJ. Thermal performance of batch boiling water targets for 18F production. Appl Radiat Isot. 2011;69(10):1349–54.

    Article  CAS  PubMed  Google Scholar 

  56. Nye JA, Avila-Rodriguez MA, Nickles RJ. A grid-mounted niobium body target for the production of reactive [18F]fluoride. Appl Radiat Isot. 2006;64(5):536–9.

    Article  CAS  PubMed  Google Scholar 

  57. Pandey MK, Byrne JF, Schlasner KN, Schmit NR, DeGrado TR. Cyclotron production of 68Ga in a liquid target: effects of solution composition and irradiation parameters. Nucl Med Biol. 2019;74-75:49–55.

    Article  CAS  PubMed  Google Scholar 

  58. Clause HK, Domnanich KA, Kleinfeldt C, Kalman M, Walker W, Vyas C, et al. Harvesting krypton isotopes from the off-gas of an irradiated water target to generate 76Br and 77Br. Sci Rep. 2022;12(1):1433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Pyles JM, Massicano AVF, Appiah J-P, Bartels JL, Alford A, Lapi SE. Production of 52Mn using a semi-automated module. Appl Radiat Isot. 2021;174:109741.

    Article  CAS  PubMed  Google Scholar 

  60. Loveless CS, Blanco JR, Diehl GL, Elbahrawi RT, Carzaniga TS, Braccini S, et al. Cyclotron production and separation of scandium radionuclides from natural titanium metal and titanium dioxide targets. J Nucl Med. 2021;62(1):131–6.

    Article  CAS  PubMed  Google Scholar 

  61. Loveless CS, Radford LL, Ferran SJ, Queern SL, Shepherd MR, Lapi SE. Photonuclear production, chemistry, and in vitro evaluation of the theranostic radionuclide 47Sc. EJNMMI Res. 2019;9(1):42.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Tarasov VA, Andreev OI, Romanov EG, Kuznetsov RA, Kupriyanov VV, Tselishchev IV. Production of no-carrier added Lutetium-177 by irradiation of enriched Ytterbium-176. Curr Radiopharm. 2015;8(2):95–106.

    Article  CAS  PubMed  Google Scholar 

  63. Jones W, Griffiths K, Barata PC, Paller CJ. PSMA Theranostics: review of the current status of PSMA-targeted imaging and Radioligand therapy. Cancers (Basel). 2020;12(6)

    Google Scholar 

  64. Werner RA, Weich A, Kircher M, Solnes LB, Javadi MS, Higuchi T, et al. The theranostic promise for neuroendocrine tumors in the late 2010s – where do we stand, where do we go? Theranostics. 2018;8(22):6088–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Domnanich KA, Müller C, Benešová M, Dressler R, Haller S, Köster U, et al. 47Sc as useful β-emitter for the radiotheragnostic paradigm: a comparative study of feasible production routes. EJNMMI Radiopharm Chem. 2017;2(1):5.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Naskar N, Lahiri S. Theranostic terbium radioisotopes: challenges in production for clinical application. Front Med (Lausanne). 2021;8:6e75014.

    Article  Google Scholar 

  67. Gracheva N, Müller C, Talip Z, Heinitz S, Köster U, Zeevaart JR, et al. Production and characterization of no-carrier-added 161Tb as an alternative to the clinically-applied 177Lu for radionuclide therapy. EJNMMI Radiopharm Chem. 2019;4(1):12.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suzanne E. Lapi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cingoranelli, S.J., Lapi, S.E. (2023). The Production of Therapeutic Radionuclides. In: Bodei, L., Lewis, J.S., Zeglis, B.M. (eds) Radiopharmaceutical Therapy. Springer, Cham. https://doi.org/10.1007/978-3-031-39005-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-39005-0_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-39004-3

  • Online ISBN: 978-3-031-39005-0

  • eBook Packages: Biomedical and Life Sciences

Publish with us

Policies and ethics