Skip to main content

Peptides as Vectors for Radiopharmaceutical Therapy

  • Chapter
  • First Online:
Radiopharmaceutical Therapy

Abstract

Radiolabeled receptor-binding peptides enable the selective delivery of radionuclides to target tissues (e.g., tumor) while reducing radiation toxicity to peripheral organs. Peptide-based nuclear imaging and radiopharmaceutical therapy (RPT) have advanced significantly in recent years with the United States Food and Drug Administration’s approvals of 68Ga-labeled NETSPOT® for the positron emission tomography (PET) imaging of neuroendocrine tumors in 2016 and its 177Lu-labeled therapeutic twin LUTATHERA® in 2018. Peptides can be viewed as smaller fragments of proteins, typically composed of α-amino acids in the L-configuration. The high affinity of peptides for their molecular targets as well as their ease of synthesis, tolerance to structural modifications, and general lack of immunogenicity make them particularly attractive as vectors for RPT (or, more specifically, peptide receptor radionuclide therapy, PRRT). However, the properties that make peptides attractive tools for diagnostic imaging—such as their rapid clearance—can become liabilities in the context of RPT, where longer circulation times may be desirable to achieve high levels of accumulation in target tissue. This chapter describes strategies for the identification of promising peptide sequences, common structural modifications employed for the successful development of peptides for RPT, and widely used strategies for radiolabeling. We also describe particularly notable peptide receptor targets, their associated ligands, and the future of peptide-based RPT in the clinic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sang Q-XA, Usmani SS, Bedi G, Samuel JS, Singh S, Kalra S, et al. THPdb: Database of FDA-approved peptide and protein therapeutics. PLoS One. 2017;12(7):e0181748.

    Google Scholar 

  2. Wang L, Wang N, Zhang W, Cheng X, Yan Z, Shao G, et al. Therapeutic peptides: current applications and future directions. Signal Transduct and Target Ther. 2022;7(1):48.

    Google Scholar 

  3. Muttenthaler M, King GF, Adams DJ, Alewood PF. Trends in peptide drug discovery. Nat Rev Drug Discov. 2021;20(4):309–25.

    Google Scholar 

  4. Al Shaer D, Al Musaimi O, Albericio F, de la Torre BG. 2021 FDA TIDES (Peptides and Oligonucleotides) harvest. Pharmaceuticals. 2022;15(2):222.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Fani M, Nicolas GP, Wild D. Somatostatin receptor antagonists for imaging and therapy. J Nucl Med. 2017;58(Supplement 2):61S–6S.

    Article  PubMed  CAS  Google Scholar 

  6. Bruchertseifer F, Kellerbauer A, Malmbeck R, Morgenstern A. Targeted alpha therapy with bismuth-213 and actinium-225: Meeting future demand. J Labelled Comp Radiopharm. 2019;62(11):794–802.

    Article  PubMed  CAS  Google Scholar 

  7. Morgenstern A, Apostolidis C, Bruchertseifer F. Supply and Clinical Application of Actinium-225 and Bismuth-213. Semin Nucl Med. 2020;50(2):119–23.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Hansen PR, Oddo A. Fmoc solid-phase peptide synthesis. Methods Mol Biol. 2015;1348:33–50.

    Article  PubMed  CAS  Google Scholar 

  9. Behrendt R, White P, Offer J. Advances in Fmoc solid-phase peptide synthesis. J Pept Sci. 2016;22(1):4–27.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Coin I, Beyermann M, Bienert M. Solid-phase peptide synthesis: from standard procedures to the synthesis of difficult sequences. Nat Protoc. 2007;2(12):3247–56.

    Article  PubMed  CAS  Google Scholar 

  11. Howl J. Peptide synthesis and applications. 2nd ed. Totowa: Humana Press; 2013. 1–253 p

    Google Scholar 

  12. Stawikowski M, Fields GB. Introduction to peptide synthesis. Curr Protocols Protein Sci. 2012;69(1) https://doi.org/10.1002/0471140864.ps1801s69.

  13. Osl T, Schmidt A, Schwaiger M, Schottelius M, Wester H-J. A new class of PentixaFor- and PentixaTher-based theranostic agents with enhanced CXCR4-targeting efficiency. Theranostics. 2020;10(18):8264–80.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Eychenne R, Bouvry C, Bourgeois M, Loyer P, Benoist E, Lepareur N. Overview of Radiolabeled Somatostatin Analogs for Cancer Imaging and Therapy. Molecules. 2020;25(17):4012.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Pless J. The history of somatostatin analogs. J Endocrinol Invest. 2005;28(11 Suppl International):1–4.

    PubMed  CAS  Google Scholar 

  16. Levine R, Krenning EP. Clinical history of the theranostic radionuclide approach to neuroendocrine tumors and other types of cancer: historical review based on an interview of Eric P. Krenning by Rachel Levine. J Nucl Med. 2017;58(Supplement 2):3S–9S.

    Article  PubMed  CAS  Google Scholar 

  17. Erak M, Bellmann-Sickert K, Els-Heindl S, Beck-Sickinger AG. Peptide chemistry toolbox – Transforming natural peptides into peptide therapeutics. Bioorg Med Chem. 2018;26(10):2759–65.

    Article  PubMed  CAS  Google Scholar 

  18. Chatterjee J, Gilon C, Hoffman A, Kessler H. N-Methylation of Peptides: A New Perspective in Medicinal Chemistry. Acc Chem Res. 2008;41(10):1331–42.

    Article  PubMed  CAS  Google Scholar 

  19. Jwad R, Weissberger D, Hunter L. Strategies for Fine-Tuning the Conformations of Cyclic Peptides. Chem Rev. 2020;120(17):9743–89.

    Article  PubMed  CAS  Google Scholar 

  20. Lewis J, Windhorst AD, Zeglis BM. Radiopharmaceutical chemistry. Springer, 2019.

    Book  Google Scholar 

  21. Zorzi A, Linciano S, Angelini A. Non-covalent albumin-binding ligands for extending the circulating half-life of small biotherapeutics. MedChemComm. 2019;10:1068.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Rangger C, Haubner R. Radiolabelled peptides for positron emission tomography and endoradiotherapy in oncology. Pharmaceuticals. 2020;13(2):22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Marin JFG, Nunes RF, Coutinho AM, Zaniboni EC, Costa LB, Barbosa FG, et al. Theranostics in nuclear medicine: emerging and re-emerging integrated imaging and therapies in the era of precision oncology. Radiographics. 2020;40(6):1715–40.

    Article  Google Scholar 

  24. Werle M, Bernkop-Schnurch A. Strategies to improve plasma half life time of peptide and protein drugs. Amino Acids. 2006;30(4):351–67.

    Article  PubMed  CAS  Google Scholar 

  25. Evans BJ, King AT, Katsifis A, Matesic L, Jamie JF. Methods to enhance the metabolic stability of peptide-based PET radiopharmaceuticals. Molecules. 2020;25(10):2314.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Ali AM, Atmaj J, Van Oosterwijk N, Groves MR, Dömling A. Stapled peptides inhibitors: a new window for target drug discovery. Comput Struct Biotechnol J. 2019;17:263–81.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Li F, Leier A, Liu Q, Wang Y, Xiang D, Akutsu T, et al. Procleave: predicting protease-specific substrate cleavage sites by combining sequence and structural information. Genomics Proteomics Bioinformatics. 2020;18(1):52–64.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Shahinian H, Tholen S, Schilling O. Proteomic identification of protease cleavage sites: cell-biological and biomedical applications. Expert Rev Proteomics. 2014;10(5):421–33.

    Article  Google Scholar 

  29. Powell MF, Grey H, Gaeta F, Sette A, Colón S. Peptide stability in drug development: a comparison of peptide reactivity in different biological media. J Pharm Sci. 1992;81(8):731–5.

    Article  PubMed  CAS  Google Scholar 

  30. Diao L, Meibohm B. Pharmacokinetics and pharmacokinetic-pharmacodynamic correlations of therapeutic peptides. Clin Pharmacokinet. 2013;52(10):855–68.

    Article  PubMed  CAS  Google Scholar 

  31. Cheng T-L, Chuang K-H, Chen B-M, Roffler SR. Analytical measurement of PEGylated molecules. Bioconjug Chem. 2012;23(5):881–99.

    Article  PubMed  CAS  Google Scholar 

  32. Hausner SH, Bauer N, Hu LY, Knight LM, Sutcliffe JL. The effect of Bi-terminal PEGylation of an integrin αvβ6–targeted 18F peptide on pharmacokinetics and tumor uptake. J Nucl Med. 2015;56(5):784–90.

    Google Scholar 

  33. Pasut G, Guiotto A, Veronese FM. Protein, peptide and non-peptide drug PEGylation for therapeutic application. Expert Opin Ther Pat. 2004;14(6):859–94.

    Article  CAS  Google Scholar 

  34. Harris JM, Chess RB. Effect of PEGylation on pharmaceuticals. Nat Rev Drug Discov. 2003;2(3):214–21.

    Google Scholar 

  35. Ekladious I, Colson YL, Grinstaff MW. Polymer–drug conjugate therapeutics: advances, insights and prospects. Nat Rev Drug Discov. 2019;18(4):273–94.

    Google Scholar 

  36. Wester H-J, Schottelius M, Scheidhauer K, Reubi J-C, Wolf I, Schwaiger M. Comparison of radioiodinated TOC, TOCA and Mtr-TOCA: the effect of carbohydration on the pharmacokinetics. Eur J Nucl Med Mol Imaging. 2002;29(1):28–38.

    Article  PubMed  CAS  Google Scholar 

  37. Schottelius M, Wester H-J, Reubi JC, Senekowitsch-Schmidtke R, Schwaiger M. Improvement of Pharmacokinetics of Radioiodinated Tyr3-Octreotide by Conjugation with Carbohydrates. Bioconjug Chem. 2002;13(5):1021–30.

    Article  PubMed  CAS  Google Scholar 

  38. Haubner R, Kuhnast B, Mang C, Weber WA, Kessler H, Wester H-J, et al. [18F]Galacto-RGD: synthesis, radiolabeling, metabolic stability, and radiation dose estimates. Bioconjug Chem. 2004;15(1):61–9.

    Google Scholar 

  39. Haubner R, Wester H-J, Burkhart F, Senekowitsch-Schmidtke R, Weber W, Goodman SL, et al. Glycosylated RGD-containing peptides: tracer for tumor targeting and angiogenesis imaging with improved biokinetics. J Nucl Med. 2001;42(2):326.

    PubMed  CAS  Google Scholar 

  40. Chen H, Wang G, Lang L, Jacobson O, Kiesewetter DO, Liu Y, et al. Chemical conjugation of evans blue derivative: a strategy to develop long-acting therapeutics through albumin binding. Theranostics. 2016;6(2):243–53.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Davis RA, Hausner SH, Harris R, Sutcliffe JL. A comparison of Evans blue and 4-(p-Iodophenyl)butyryl albumin binding moieties on an integrin αvβ6 binding peptide. Pharmaceutics. 2022;14(4):745.

    Google Scholar 

  42. Liu Z, Chen X. Simple bioconjugate chemistry serves great clinical advances: albumin as a versatile platform for diagnosis and precision therapy. Chem Soc Rev. 2016;45(5):1432–56.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Sun X, Li Y, Liu T, Li Z, Zhang X, Chen X. Peptide-based imaging agents for cancer detection. Adv Drug Deliv Rev. 2017;110–111:38–51.

    Article  PubMed  Google Scholar 

  44. Liolios C, Sachpekidis C, Kolocouris A, Dimitrakopoulou-Strauss A, Bouziotis P. PET diagnostic molecules utilizing multimeric cyclic RGD peptide analogs for imaging integrin αvβ3 receptors. Molecules. 2021;26(6):1792.

    Google Scholar 

  45. Brechbiel MW. Agent optimization: absorption, distribution, metabolism, excretion, dose, and decay. J Nucl Med. 2021;62(4):455–6.

    Article  PubMed  PubMed Central  Google Scholar 

  46. White JM, Escorcia FE, Viola NT. Perspectives on metals-based radioimmunotherapy (RIT): moving forward. Theranostics. 2021;11(13):6293–314.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Kassis AI. Therapeutic radionuclides: biophysical and radiobiologic principles. Semin Nucl Med. 2008;38(5):358–66.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Zoller F, Eisenhut M, Haberkorn U, Mier W. Endoradiotherapy in cancer treatment--basic concepts and future trends. Eur J Pharmacol. 2009;625(1–3):55–62.

    Article  PubMed  CAS  Google Scholar 

  49. Guérard F, Gestin J-F, Brechbiel MW. Production of [211At]-astatinated radiopharmaceuticals and applications in targeted α-particle therapy. Cancer Biother Radiopharm. 2012;28(1):1–20.

    Google Scholar 

  50. Bhattacharyya S, Dixit M. Metallic radionuclides in the development of diagnostic and therapeutic radiopharmaceuticals. Dalton Trans. 2011;40(23):6112–28.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Yang H, Wilson JJ, Orvig C, Li Y, Wilbur DS, Ramogida CF, et al. Harnessing α-emitting radionuclides for therapy: radiolabeling method review. J Nucl Med. 2022;63(1):5–13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Minkoff BB, Bruckbauer ST, Sabat G, Cox MM, Sussman MR. Covalent modification of amino acids and peptides induced by ionizing radiation from an electron beam linear accelerator used in radiotherapy. Radiat Res. 2019;191(5):447–59.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Liu S, Edwards DS. Stabilization of 90Y-labeled DOTA-biomolecule conjugates using gentisic acid and ascorbic acid. Bioconjug Chem. 2001;12(4):554–8.

    Google Scholar 

  54. Burgus R, Ling N, Butcher M, Guillemin R. Primary structure of somatostatin, a hypothalamic peptide that inhibits the secretion of pituitary growth hormone. Proc Natl Acad Sci U S A. 1973;70(3):684–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Kwekkeboom DJ, Mueller-Brand J, Paganelli G, Anthony LB, Pauwels S, Kvols LK, et al. Overview of results of peptide receptor radionuclide therapy with 3 radiolabeled somatostatin analogs. J Nucl Med. 2005;46(Suppl 1):62s–6s.

    PubMed  CAS  Google Scholar 

  56. Scala S. Molecular pathways: targeting the CXCR4-CXCL12 Axis–untapped potential in the tumor microenvironment. Clin Cancer Res. 2015;21(19):4278–85.

    Article  PubMed  CAS  Google Scholar 

  57. Murakami T, Nakajima T, Koyanagi Y, Tachibana K, Fujii N, Tamamura H, et al. A small molecule CXCR4 inhibitor that blocks T cell line-tropic HIV-1 infection. J Exp Med. 1997;186(8):1389–93.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Masuda M, Nakashima H, Ueda T, Naba H, Ikoma R, Otaka A, et al. A novel anti-HIV synthetic peptide, T-22 ([Tyr5,12,Lys7]-polyphemusin II). Biochem Biophys Res Commun. 1992;189(2):845–50.

    Article  PubMed  CAS  Google Scholar 

  59. Tamamura H, Imai M, Ishihara T, Masuda M, Funakoshi H, Oyake H, et al. Pharmacophore identification of a chemokine receptor (CXCR4) antagonist, T22 ([Tyr(5,12),Lys7]-polyphemusin II), which specifically blocks T cell-line-tropic HIV-1 infection. Bioorg Med Chem. 1998;6(7):1033–41.

    Article  PubMed  CAS  Google Scholar 

  60. Wang Z, Zhang M, Wang L, Wang S, Kang F, Li G, et al. Prospective study of 68Ga-NOTA-NFB: radiation dosimetry in healthy volunteers and first application in glioma patients. Theranostics. 2015;5(8):882–9.

    Google Scholar 

  61. Fujii N, Oishi S, Hiramatsu K, Araki T, Ueda S, Tamamura H, et al. Molecular-size reduction of a potent CXCR4-chemokine antagonist using orthogonal combination of conformation- and sequence-based libraries. Angew Chem Int Ed Engl. 2003;42(28):3251–3.

    Article  PubMed  CAS  Google Scholar 

  62. Gourni E, Demmer O, Schottelius M, D’Alessandria C, Schulz S, Dijkgraaf I, et al. PET of CXCR4 expression by a 68Ga-labeled highly specific targeted contrast agent. J Nucl Med. 2011;52(11):1803–10.

    Google Scholar 

  63. Philipp-Abbrederis K, Herrmann K, Knop S, Schottelius M, Eiber M, Lückerath K, et al. In vivo molecular imaging of chemokine receptor CXCR4 expression in patients with advanced multiple myeloma. EMBO Mol Med. 2015;7(4):477–87.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Poschenrieder A, Schottelius M, Schwaiger M, Kessler H, Wester HJ. The influence of different metal-chelate conjugates of pentixafor on the CXCR4 affinity. EJNMMI Res. 2016;6(1):36.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Herrmann K, Schottelius M, Lapa C, Osl T, Poschenrieder A, Hänscheid H, et al. First-in-human experience of CXCR4-directed endoradiotherapy with 177Lu- and 90Y-labeled pentixather in advanced-stage multiple myeloma with extensive intra- and extramedullary disease. J Nucl Med. 2016;57(2):248–51.

    Google Scholar 

  66. Schottelius M, Osl T, Poschenrieder A, Hoffmann F, Beykan S, Hänscheid H, et al. [177Lu]pentixather: comprehensive preclinical characterization of a First CXCR4-directed endoradiotherapeutic agent. Theranostics. 2017;7(9):2350–62.

    Google Scholar 

  67. Lapa C, Hänscheid H, Kircher M, Schirbel A, Wunderlich G, Werner RA, et al. Feasibility of CXCR4-directed radioligand therapy in advanced diffuse large B-cell lymphoma. J Nucl Med. 2019;60(1):60–4.

    Article  PubMed  CAS  Google Scholar 

  68. Moreno P, Ramos-Álvarez I, Moody TW, Jensen RT. Bombesin related peptides/receptors and their promising therapeutic roles in cancer imaging, targeting and treatment. Expert Opin Ther Targets. 2016;20(9):1055–73.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Stott Reynolds TP, Bandari RP, Jiang Z, Smith CJ. Lutetium-177 labeled bombesin peptides for radionuclide therapy. Curr Radiopharm. 2015;9(1):33–43.

    Article  Google Scholar 

  70. Anastasi A, Erspamer V, Bucci M. Isolation and structure of bombesin and alytesin, two analogous active peptides from skin of european amphibians bombina and alytes. Experientia. 1971;27(2):166–7.

    Article  PubMed  CAS  Google Scholar 

  71. Reynolds TS, Bandari RP, Jiang Z, Smith CJ. Lutetium-177 labeled bombesin peptides for radionuclide therapy. Curr Radiopharm. 2016;9(1):33–43.

    Article  PubMed  CAS  Google Scholar 

  72. Varshney R, Hazari PP, Fernandez P, Schulz J, Allard M, Mishra AK. 68Ga-labeled bombesin analogs for receptor-mediated imaging. Recent Results Cancer Res. 2013;194:221–56.

    Google Scholar 

  73. Baum RP, Vikas, Mutloka N, Frischknecht M, Maecke H, Reubi J. Molecular imaging of bombesin receptors in various tumors by Ga-68 AMBA PET/CT: first results. J Nucl Med. 2007;48(Supp 2):79P.

    Google Scholar 

  74. Maddalena ME, Fox J, Chen J, Feng W, Cagnolini A, Linder KE, et al. 177Lu-AMBA biodistribution, radiotherapeutic efficacy, imaging, and autoradiography in prostate cancer models with low GRP-R expression. J Nucl Med. 2009;50(12):2017–24.

    Google Scholar 

  75. Gorica J, De Feo MS. Gastrin-releasing peptide receptor agonists and antagonists for molecular imaging of breast and prostate cancer: from pre-clinical studies to translational perspectives. Expert Rev Mol Diagn. 2022;22(11):991–6.

    Article  PubMed  CAS  Google Scholar 

  76. Mansi R, Wang X, Forrer F, Waser B, Cescato R, Graham K, et al. Development of a potent DOTA-conjugated bombesin antagonist for targeting GRPr-positive tumours. Eur J Nucl Med Mol Imaging. 2011;38(1):97–107.

    Article  PubMed  CAS  Google Scholar 

  77. Kurth J, Krause BJ, Schwarzenböck SM, Bergner C, Hakenberg OW, Heuschkel M. First-in-human dosimetry of gastrin-releasing peptide receptor antagonist [177Lu]Lu-RM2: a radiopharmaceutical for the treatment of metastatic castration-resistant prostate cancer. Eur J Nucl Med Mol Imaging. 2020;47(1):123–35.

    Google Scholar 

  78. Heimbrook DC, Saari WS, Balishin NL, Fisher TW, Friedman A, Kiefer DM, et al. Gastrin releasing peptide antagonists with improved potency and stability. J Med Chem. 1991;34(7):2102–7.

    Article  PubMed  CAS  Google Scholar 

  79. Dalm SU, Bakker IL, de Blois E, Doeswijk GN, Konijnenberg MW, Orlandi F, et al. 68Ga/177Lu-NeoBOMB1, a novel radiolabeled GRPR antagonist for theranostic use in oncology. J Nucl Med. 2017;58(2):293–9.

    Google Scholar 

  80. Liu Z, Wang F, Chen X. Integrin targeted delivery of radiotherapeutics. Theranostics. 2011;1:201–10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Haubner R, Wester HJ, Reuning U, Senekowitsch-Schmidtke R, Diefenbach B, Kessler H, et al. Radiolabeled alphavbeta3 integrin antagonists: a new class of tracers for tumor targeting. J Nucl Med. 1999;40(6):1061–71.

    Google Scholar 

  82. Haubner R, Wester HJ, Weber WA, Mang C, Ziegler SI, Goodman SL, et al. Noninvasive imaging of alphavbeta3 integrin expression using 18F-labeled RGD-containing glycopeptide and positron emission tomography. Cancer Res. 2001;61(5):1781–5.

    Google Scholar 

  83. Haubner R. Alphavbeta3-integrin imaging: a new approach to characterise angiogenesis? Eur J Nucl Med Mol Imaging. 2006;33(Suppl 1):54–63.

    Article  PubMed  Google Scholar 

  84. Jackson IM, Scott PJH, Thompson S. Clinical applications of radiolabeled peptides for PET. Semin Nucl Med. 2017;47(5):493–523.

    Article  PubMed  Google Scholar 

  85. Janssen ML, Oyen WJ, Dijkgraaf I, Massuger LF, Frielink C, Edwards DS, et al. Tumor targeting with radiolabeled alphavbeta3 integrin binding peptides in a nude mouse model. Cancer Res. 2002;62(21):6146–51.

    Google Scholar 

  86. Zhao L, Chen H, Guo Z, Fu K, Yao L, Fu L, et al. Targeted radionuclide therapy in patient-derived xenografts using 177Lu-EB-RGD. Mol Cancer Ther. 2020;19(10):2034–43.

    Google Scholar 

  87. Chen H, Jacobson O, Niu G, Weiss ID, Kiesewetter DO, Liu Y, et al. Novel “Add-On” molecule based on Evans blue confers superior pharmacokinetics and transforms drugs to theranostic agents. J Nucl Med. 2017;58(4):590–7.

    Google Scholar 

  88. Niu J, Li Z. The roles of integrin αvβ6 in cancer. Cancer Lett. 2017;403:128–37.

    Google Scholar 

  89. Färber SF, Wurzer A, Reichart F, Beck R, Kessler H, Wester HJ, et al. Therapeutic radiopharmaceuticals targeting integrin αvβ6. ACS Omega. 2018;3(2):2428–36.

    Google Scholar 

  90. Logan D, Abughazaleh R, Blakemore W, Curry S, Jackson T, King A, et al. Structure of a major immunogenic site on foot-and-mouth-disease virus. Nature. 1993;362(6420):566–8.

    Article  PubMed  CAS  Google Scholar 

  91. Hausner SH, Bold RJ, Cheuy LY, Chew HK, Daly ME, Davis RA. Preclinical development and first-in-human imaging of the integrin αvβ6 with [18F]αvβ6-binding peptide in metastatic carcinoma. Clin Cancer Res. 2019;25(4):1206–15.

    Google Scholar 

  92. Ganguly T, Bauer N, Davis RA, Foster CC, Harris RE, Hausner SH, et al. Preclinical evaluation of 68Ga- and 177Lu-labeled integrin αvβ6-targeting radiotheranostic peptides. J Nucl Med. 2023, 64:639-644

    Google Scholar 

  93. Nakamoto R, Ferri V, Duan H, Hatami N, Goel M, Rosenberg J, et al. Pilot-phase PET/CT study targeting integrin αvβ6 in pancreatic cancer patients using the cystine-knot peptide–based 18F-FP-R01-MG-F2. Eur J Nucl Med Mol Imaging. 2021;50(1):184–93.

    Google Scholar 

  94. Quigley NG, Steiger K, Hoberück S, Czech N, Zierke MA, Kossatz S, et al. PET/CT imaging of head-and-neck and pancreatic cancer in humans by targeting the “Cancer Integrin” αvβ6 with Ga-68-Trivehexin. Eur J Nucl Med Mol Imaging. 2022;49(4):1136–47.

    Google Scholar 

  95. Lu X, Lu C, Yang Y, Shi X, Wang H, Yang N, et al. Current status and trends in peptide receptor radionuclide therapy in the past 20 years (2000–2019): a bibliometric study. Front Pharmacol. 2021;12:624534.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julie L. Sutcliffe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Davis, R.A., Ganguly, T., Hausner, S.H., Sutcliffe, J.L. (2023). Peptides as Vectors for Radiopharmaceutical Therapy. In: Bodei, L., Lewis, J.S., Zeglis, B.M. (eds) Radiopharmaceutical Therapy. Springer, Cham. https://doi.org/10.1007/978-3-031-39005-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-39005-0_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-39004-3

  • Online ISBN: 978-3-031-39005-0

  • eBook Packages: Biomedical and Life Sciences

Publish with us

Policies and ethics