Skip to main content

Appraisal of Randomized Sham-Controlled Trial Data on Renal Denervation for the Management of Hypertension

  • Chapter
  • First Online:
Renal Denervation

Abstract

The following text provides a brief summary of pivotal non-randomized and randomized non-sham controlled trials followed by a more detailed description of randomized sham-controlled trials of renal denervation in the treatment of hypertension.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Steigerwald K, Titova A, Malle C, et al. Morphological assessment of renal arteries after radiofrequency catheter-based sympathetic denervation in a porcine model. J Hypertens. 2012;30:2230–9.

    Article  CAS  PubMed  Google Scholar 

  2. Rippy MK, Zarins D, Barman NC, Wu A, Duncan KL, Zarins CK. Catheter-based renal sympathetic denervation: chronic preclinical evidence for renal artery safety. Clin Res Cardiol. 2011;100:1095–101.

    Article  PubMed  Google Scholar 

  3. Krum H, Schlaich M, Whitbourn R, et al. Catheter-based renal sympathetic denervation for resistant hypertension: a multicentre safety and proof-of-principle cohort study. Lancet. 2009;373:1275–81.

    Article  PubMed  Google Scholar 

  4. Schlaich MP, Sobotka PA, Krum H, Lambert E, Esler MD. Renal sympathetic-nerve ablation for uncontrolled hypertension. N Engl J Med. 2009;361:932–4.

    Article  CAS  PubMed  Google Scholar 

  5. Hering D, Lambert EA, Marusic P, et al. Substantial reduction in single sympathetic nerve firing after renal denervation in patients with resistant hypertension. Hypertension. 2013;61:457–64.

    Article  CAS  PubMed  Google Scholar 

  6. Krum H, Schlaich MP, Sobotka PA, et al. Percutaneous renal denervation in patients with treatment-resistant hypertension: final 3-year report of the Symplicity HTN-1 study. Lancet. 2014;383:622–9.

    Article  PubMed  Google Scholar 

  7. Symplicity HTNI. Catheter-based renal sympathetic denervation for resistant hypertension: durability of blood pressure reduction out to 24 months. Hypertension. 2011;57:911–7.

    Article  Google Scholar 

  8. Symplicity HTNI, Esler MD, Krum H, et al. Renal sympathetic denervation in patients with treatment-resistant hypertension (The Symplicity HTN-2 Trial): a randomised controlled trial. Lancet. 2010;376:1903–9.

    Article  Google Scholar 

  9. Esler MD, Krum H, Schlaich M, et al. Renal sympathetic denervation for treatment of drug-resistant hypertension: one-year results from the Symplicity HTN-2 randomized, controlled trial. Circulation. 2012;126:2976–82.

    Article  CAS  PubMed  Google Scholar 

  10. Esler MD, Bohm M, Sievert H, et al. Catheter-based renal denervation for treatment of patients with treatment-resistant hypertension: 36 month results from the SYMPLICITY HTN-2 randomized clinical trial. Eur Heart J. 2014;35:1752–9.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ukena C, Mahfoud F, Kindermann I, et al. Cardiorespiratory response to exercise after renal sympathetic denervation in patients with resistant hypertension. J Am Coll Cardiol. 2011;58:1176–82.

    Article  PubMed  Google Scholar 

  12. de Jager RL, de Beus E, Beeftink MM, et al. Impact of medication adherence on the effect of renal denervation: the SYMPATHY trial. Hypertension. 2017;69:678–84.

    Article  PubMed  Google Scholar 

  13. Rosa J, Widimsky P, Tousek P, et al. Randomized comparison of renal denervation versus intensified pharmacotherapy including spironolactone in true-resistant hypertension: six-month results from the Prague-15 study. Hypertension. 2015;65:407–13.

    Article  CAS  PubMed  Google Scholar 

  14. Rosa J, Widimsky P, Waldauf P, et al. Role of adding spironolactone and renal denervation in true resistant hypertension: one-year outcomes of randomized PRAGUE-15 study. Hypertension. 2016;67:397–403.

    Article  CAS  PubMed  Google Scholar 

  15. Rosa J, Widimsky P, Waldauf P, et al. Renal denervation in comparison with intensified pharmacotherapy in true resistant hypertension: 2-year outcomes of randomized PRAGUE-15 study. J Hypertens. 2017;35:1093–9.

    Article  CAS  PubMed  Google Scholar 

  16. Oliveras A, Armario P, Clara A, et al. Spironolactone versus sympathetic renal denervation to treat true resistant hypertension: results from the DENERVHTA study - a randomized controlled trial. J Hypertens. 2016;34:1863–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Azizi M, Sapoval M, Gosse P, et al. Optimum and stepped care standardised antihypertensive treatment with or without renal denervation for resistant hypertension (DENERHTN): a multicentre, open-label, randomised controlled trial. Lancet. 2015;385:1957–65.

    Article  PubMed  Google Scholar 

  18. Gosse P, Cremer A, Pereira H, et al. Twenty-four-hour blood pressure monitoring to predict and assess impact of renal denervation: the DENERHTN study (renal denervation for hypertension). Hypertension. 2017;69:494–500.

    Article  CAS  PubMed  Google Scholar 

  19. Bhatt DL, Kandzari DE, O’Neill WW, et al. A controlled trial of renal denervation for resistant hypertension. N Engl J Med. 2014;370:1393–401.

    Article  CAS  PubMed  Google Scholar 

  20. Kandzari DE, Bhatt DL, Sobotka PA, et al. Catheter-based renal denervation for resistant hypertension: rationale and design of the SYMPLICITY HTN-3 Trial. Clin Cardiol. 2012;35:528–35.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kandzari DE, Bhatt DL, Brar S, et al. Predictors of blood pressure response in the SYMPLICITY HTN-3 trial. Eur Heart J. 2015;36:219–27.

    Article  PubMed  Google Scholar 

  22. Mahfoud F, Bakris G, Bhatt DL, et al. Reduced blood pressure-lowering effect of catheter-based renal denervation in patients with isolated systolic hypertension: data from SYMPLICITY HTN-3 and the Global SYMPLICITY Registry. Eur Heart J. 2017;38:93–100.

    CAS  PubMed  Google Scholar 

  23. Mathiassen ON, Vase H, Bech JN, et al. Renal denervation in treatment-resistant essential hypertension. A randomized, SHAM-controlled, double-blinded 24-h blood pressure-based trial. J Hypertens. 2016;34:1639–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Peters CD, Mathiassen ON, Vase H, et al. The effect of renal denervation on arterial stiffness, central blood pressure and heart rate variability in treatment resistant essential hypertension: a substudy of a randomized sham-controlled double-blinded trial (the ReSET trial). Blood Press. 2017;26:366–80.

    Article  PubMed  Google Scholar 

  25. Engholm M, Bertelsen JB, Mathiassen ON, et al. Effects of renal denervation on coronary flow reserve and forearm dilation capacity in patients with treatment-resistant hypertension. A randomized, double-blinded, sham-controlled clinical trial. Int J Cardiol. 2018;250:29–34.

    Article  PubMed  Google Scholar 

  26. Desch S, Okon T, Heinemann D, et al. Randomized sham-controlled trial of renal sympathetic denervation in mild resistant hypertension. Hypertension. 2015;65:1202–8.

    Article  CAS  PubMed  Google Scholar 

  27. Fengler K, Heinemann D, Okon T, et al. Renal denervation improves exercise blood pressure: insights from a randomized, sham-controlled trial. Clin Res Cardiol. 2016;105:592–600.

    Article  PubMed  Google Scholar 

  28. Lurz P, Kresoja KP, Rommel KP, et al. Changes in stroke volume after renal denervation: insight from cardiac magnetic resonance imaging. Hypertension. 2020;75:707–13.

    Article  CAS  PubMed  Google Scholar 

  29. Bhatt DL, Vaduganathan M, Kandzari DE, et al. Long-term outcomes after catheter-based renal artery denervation for resistant hypertension: final follow-up of the randomised SYMPLICITY HTN-3 trial. Lancet. 2022.

    Google Scholar 

  30. Bohm M, Townsend RR, Kario K, et al. Rationale and design of two randomized sham-controlled trials of catheter-based renal denervation in subjects with uncontrolled hypertension in the absence (SPYRAL HTN-OFF MED Pivotal) and presence (SPYRAL HTN-ON MED Expansion) of antihypertensive medications: a novel approach using Bayesian design. Clin Res Cardiol. 2020;109:289–302.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Pekarskiy SE, Baev AE, Mordovin VF, et al. Denervation of the distal renal arterial branches vs. conventional main renal artery treatment: a randomized controlled trial for treatment of resistant hypertension. J Hypertens. 2017;35:369–75.

    Article  CAS  PubMed  Google Scholar 

  32. Bohm M, Kario K, Kandzari DE, et al. Efficacy of catheter-based renal denervation in the absence of antihypertensive medications (SPYRAL HTN-OFF MED Pivotal): a multicentre, randomised, sham-controlled trial. Lancet. 2020;395:1444–51.

    Article  PubMed  Google Scholar 

  33. Townsend RR, Mahfoud F, Kandzari DE, et al. Catheter-based renal denervation in patients with uncontrolled hypertension in the absence of antihypertensive medications (SPYRAL HTN-OFF MED): a randomised, sham-controlled, proof-of-concept trial. Lancet. 2017;390:2160–70.

    Article  PubMed  Google Scholar 

  34. Weber T, Wassertheurer S, Mayer CC, et al. Twenty-four-hour pulsatile hemodynamics predict brachial blood pressure response to renal denervation in the SPYRAL HTN-OFF MED trial. Hypertension. 2022;79:1506–14.

    Article  CAS  PubMed  Google Scholar 

  35. Bohm M, Tsioufis K, Kandzari DE, et al. Effect of heart rate on the outcome of renal denervation in patients with uncontrolled hypertension. J Am Coll Cardiol. 2021;78:1028–38.

    Article  PubMed  Google Scholar 

  36. Bohm M, Mahfoud F, Townsend RR, et al. Ambulatory heart rate reduction after catheter-based renal denervation in hypertensive patients not receiving anti-hypertensive medications: data from SPYRAL HTN-OFF MED, a randomized, sham-controlled, proof-of-concept trial. Eur Heart J. 2019;40:743–51.

    Article  PubMed  Google Scholar 

  37. Mahfoud F, Townsend RR, Kandzari DE, et al. Changes in plasma renin activity after renal artery sympathetic denervation. J Am Coll Cardiol. 2021;77:2909–19.

    Article  CAS  PubMed  Google Scholar 

  38. Kandzari DE, Bohm M, Mahfoud F, et al. Effect of renal denervation on blood pressure in the presence of antihypertensive drugs: 6-month efficacy and safety results from the SPYRAL HTN-ON MED proof-of-concept randomised trial. Lancet. 2018;391:2346–55.

    Article  PubMed  Google Scholar 

  39. Mahfoud F, Kandzari DE, Kario K, et al. Long-term efficacy and safety of renal denervation in the presence of antihypertensive drugs (SPYRAL HTN-ON MED): a randomised, sham-controlled trial. Lancet. 2022;399:1401–10.

    Article  CAS  PubMed  Google Scholar 

  40. Kario K, Weber MA, Bohm M, et al. Effect of renal denervation in attenuating the stress of morning surge in blood pressure: post-hoc analysis from the SPYRAL HTN-ON MED trial. Clin Res Cardiol. 2021;110:725–31.

    Article  PubMed  Google Scholar 

  41. Mabin T, Sapoval M, Cabane V, Stemmett J, Iyer M. First experience with endovascular ultrasound renal denervation for the treatment of resistant hypertension. EuroIntervention. 2012;8:57–61.

    Article  PubMed  Google Scholar 

  42. Daemen J, Mahfoud F, Kuck KH, et al. Safety and efficacy of endovascular ultrasound renal denervation in resistant hypertension: 12-month results from the ACHIEVE study. J Hypertens. 2019;37:1906–12.

    Article  CAS  PubMed  Google Scholar 

  43. Montalescot G, Cluzel P, Girerd X, Pathek A. REALISE trial: renal denervation by ultrasound transcatheter emission: six month results. J Am Coll Cardiol. 2014;64.

    Google Scholar 

  44. Mauri L, Kario K, Basile J, et al. A multinational clinical approach to assessing the effectiveness of catheter-based ultrasound renal denervation: the RADIANCE-HTN and REQUIRE clinical study designs. Am Heart J. 2018;195:115–29.

    Article  PubMed  Google Scholar 

  45. Azizi M, Schmieder RE, Mahfoud F, et al. Endovascular ultrasound renal denervation to treat hypertension (RADIANCE-HTN SOLO): a multicentre, international, single-blind, randomised, sham-controlled trial. Lancet. 2018;391:2335–45.

    Article  PubMed  Google Scholar 

  46. Azizi M, Schmieder RE, Mahfoud F, et al. Six-month results of treatment-blinded medication titration for hypertension control following randomization to endovascular ultrasound renal denervation or a sham procedure in the RADIANCE-HTN SOLO trial. Circulation. 2019.

    Google Scholar 

  47. Azizi M, Daemen J, Lobo MD, et al. 12-month results from the unblinded phase of the RADIANCE-HTN SOLO trial of ultrasound renal denervation. JACC Cardiovasc Interv. 2020;13:2922–33.

    Article  PubMed  Google Scholar 

  48. Mahfoud F, Bloch MJ, Azizi M, et al. Changes in blood pressure after crossover to ultrasound renal denervation in patients initially treated with sham in the RADIANCE-HTN SOLO trial. EuroIntervention. 2021;17:e1024–e32.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Fisher NDL, Kirtane AJ, Daemen J, et al. Plasma renin and aldosterone concentrations related to endovascular ultrasound renal denervation in the RADIANCE-HTN SOLO trial. J Hypertens. 2022;40:221–8.

    Article  CAS  PubMed  Google Scholar 

  50. Azizi M, Sanghvi K, Saxena M, et al. Ultrasound renal denervation for hypertension resistant to a triple medication pill (RADIANCE-HTN TRIO): a randomised, multicentre, single-blind, sham-controlled trial. Lancet. 2021;397:2476–86.

    Article  CAS  PubMed  Google Scholar 

  51. Kario K, Yokoi Y, Okamura K, et al. Catheter-based ultrasound renal denervation in patients with resistant hypertension: the randomized, controlled REQUIRE trial. Hypertens Res. 2022;45:221–31.

    Article  PubMed  Google Scholar 

  52. Endovascular Ultrasound Renal Denervation to Treat Hypertension JAMA. 2023;329(8):651. https://doi.org/10.1001/jama.2023.0713

  53. Fengler K, Rommel KP, Lapusca R, et al. Renal denervation in isolated systolic hypertension using different catheter techniques and technologies. Hypertension. 2019;74:341–8.

    Article  CAS  PubMed  Google Scholar 

  54. Weber MA, Kirtane AJ, Weir MR, et al. The reduce HTN: reinforce: randomized, Sham-controlled trial of bipolar radiofrequency renal denervation for the treatment of hypertension. JACC Cardiovasc Interv. 2020;13:461–70.

    Article  PubMed  Google Scholar 

  55. Pathak A, Rudolph UM, Saxena M, et al. Alcohol mediated renal denervation in patients with hypertension in the absence of antihypertensive medications. Eurointervention. 2023, July 10th ahead of print.

    Google Scholar 

  56. Schmieder RE, Ott C, Toennes SW, et al. Phase II randomized sham-controlled study of renal denervation for individuals with uncontrolled hypertension - WAVE IV. J Hypertens. 2018;36:680–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bertog, S.C. et al. (2023). Appraisal of Randomized Sham-Controlled Trial Data on Renal Denervation for the Management of Hypertension. In: Heuser, R.R., Schlaich, M.P., Hering, D., Bertog, S.C. (eds) Renal Denervation. Springer, Cham. https://doi.org/10.1007/978-3-031-38934-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-38934-4_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-38933-7

  • Online ISBN: 978-3-031-38934-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics