Skip to main content

Realizability Makes A Difference: A Complexity Gap For Sink-Finding in USOs

Part of the Lecture Notes in Computer Science book series (LNCS,volume 14079)

Abstract

Algorithms for finding the sink in Unique Sink Orientations (USOs) of the hypercube can be used to solve many algebraic, geometric, and combinatorial problems, most importantly including the P-Matrix Linear Complementarity Problem and Linear Programming. The realizable USOs are those that arise from the reductions of these problems to the USO sink-finding problem. Finding the sink of realizable USOs is thus highly relevant to various theoretical fields, yet it is unknown whether realizability can be exploited algorithmically to find the sink more quickly. However, the best known unconditional lower bounds for sink-finding make use of USOs that are provably not realizable. This indicates that the sink-finding problem might indeed be strictly easier on realizable USOs.

In this paper we show that this is true for a subclass of all USOs. We consider the class of Matoušek-type USOs, which are a translation of Matoušek’s LP-type problems into the language of USOs. We show a query complexity gap between sink-finding in all, and sink-finding in only the realizable n-dimensional Matoušek-type USOs. We provide concrete deterministic algorithms and lower bounds for both cases, and show that in the realizable case \(O(\log ^2n)\) vertex evaluation queries suffice, while in general exactly n queries are needed. The Matoušek-type USOs are the first USO class found to admit such a gap.

Keywords

  • Unique Sink Orientation
  • Realizability
  • Query Complexity

A version of this paper containing the omitted proofs and additional explanations can be accessed at https://arxiv.org/abs/2207.05985.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    A P-matrix is a matrix whose determinants of all principal submatrices are positive.

  2. 2.

    Branching: a forest of rooted trees, with all edges directed away from the roots.

References

  1. Borzechowski, M., Weber, S.: On degeneracy in the P-matroid oriented matroid complementarity problem (2023). https://doi.org/10.48550/ARXIV.2302.14585, appeared in Abstracts of the 39th European Workshop on Computational Geometry (EuroCG ’23), Barcelona, Spain, 2023, 9:1–9:7

  2. Fearnley, J., Gordon, S., Mehta, R., Savani, R.: Unique end of potential line. J. Comput. Syst. Sci. 114, 1–35 (2020). https://doi.org/10.1016/j.jcss.2020.05.007

    CrossRef  MathSciNet  MATH  Google Scholar 

  3. Foniok, J., Gärtner, B., Klaus, L., Sprecher, M.: Counting unique-sink orientations. Discret. Appl. Math. 163, 155–164 (2014). https://doi.org/10.1016/j.dam.2013.07.017

    CrossRef  MathSciNet  MATH  Google Scholar 

  4. Gao, Y., Gärtner, B., Lamperski, J.: A new combinatorial property of geometric unique sink orientations (2020). https://doi.org/10.48550/ARXIV.2008.08992

  5. Gärtner, B.: The random-facet simplex algorithm on combinatorial cubes. Random Struct. Algorithms 20(3), 353–381 (2002). https://doi.org/10.1002/rsa.10034

    CrossRef  MathSciNet  MATH  Google Scholar 

  6. Gärtner, B., Morris jr., W.D., Rüst, L.: Unique sink orientations of grids. Algorithmica 51(2), 200–235 (2008). https://doi.org/10.1007/s00453-007-9090-x

  7. Gärtner, B., Rüst, L.: Simple stochastic games and P-Matrix generalized linear complementarity problems. In: Liśkiewicz, M., Reischuk, R. (eds.) FCT 2005. LNCS, vol. 3623, pp. 209–220. Springer, Heidelberg (2005). https://doi.org/10.1007/11537311_19

    CrossRef  Google Scholar 

  8. Gärtner, B., Schurr, I.: Linear programming and unique sink orientations. In: Proceedings of the 17th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 749–757 (2006). https://doi.org/10.5555/1109557.1109639

  9. Gärtner, B., Welzl, E.: Explicit and implicit enforcing - randomized optimization. In: Alt, H. (ed.) Computational Discrete Mathematics. LNCS, vol. 2122, pp. 25–46. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45506-X_3

    CrossRef  Google Scholar 

  10. Holt, F., Klee, V.: A proof of the strict monotone 4-step conjecture. Contemp. Math. 223, 201–216 (1999)

    CrossRef  MathSciNet  MATH  Google Scholar 

  11. Klaus, L.: A fresh look at the complexity of pivoting in linear complementarity. Ph.D. thesis, ETH Zürich (2012). https://doi.org/10.3929/ethz-a-007604201

  12. Klaus, L., Miyata, H.: Enumeration of PLCP-orientations of the 4-cube. Eur. J. Comb. 50, 138–151 (2015). https://doi.org/10.1016/j.ejc.2015.03.010, http://www.sciencedirect.com/science/article/pii/S0195669815000712, combinatorial Geometries: Matroids, Oriented Matroids and Applications. Special Issue in Memory of Michel Las Vergnas

  13. Matoušek, J.: Lower bounds for a subexponential optimization algorithm. Random Struct. Algorithms 5(4), 591–607 (1994). https://doi.org/10.1002/rsa.3240050408

    CrossRef  MathSciNet  MATH  Google Scholar 

  14. Morris jr., W.D.: Randomized pivot algorithms for p-matrix linear complementarity problems. Math. Program. 92(2), 285–296 (2002). https://doi.org/10.1007/s101070100268

  15. Schurr, I.: Unique Sink Orientations of Cubes. Ph.D. thesis, ETH Zürich (2004). https://doi.org/10.3929/ethz-a-004844278

  16. Schurr, I., Szabó, T.: Finding the sink takes some time: an almost quadratic lower bound for finding the sink of unique sink oriented cubes. Discret. Comput. Geom. 31(4), 627–642 (2004). https://doi.org/10.1007/s00454-003-0813-8

    CrossRef  MathSciNet  MATH  Google Scholar 

  17. Smale, S.: Mathematical problems for the next century. Math. Intell. 20, 7–15 (1998). https://doi.org/10.1007/BF03025291

    CrossRef  MathSciNet  MATH  Google Scholar 

  18. Stickney, A., Watson, L.: Digraph models of Bard-type algorithms for the linear complementarity problem. Math. Oper. Res. 3(4), 322–333 (1978). https://www.jstor.org/stable/3689630

  19. Szabó, T., Welzl, E.: Unique sink orientations of cubes. In: Foundations of Computer Science, 2001. Proceedings. 42nd IEEE Symposium on, pp. 547–555. IEEE (2001). https://doi.org/10.1109/SFCS.2001.959931

  20. Weber, S., Gärtner, B.: A characterization of the realizable Matoušek unique sink orientations (2021). https://doi.org/10.48550/ARXIV.2109.03666

  21. Yao, A.C.: Probabilistic computations: toward a unified measure of complexity. In: 18th Annual Symposium on Foundations of Computer Science (SFCS 1977), pp. 222–227 (1977). https://doi.org/10.1109/SFCS.1977.24

Download references

Acknowledgments

We thank Bernd Gärtner for his valuable insights and feedback. This research was supported by the Swiss National Science Foundation under project no. 204320.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Weber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Weber, S., Widmer, J. (2023). Realizability Makes A Difference: A Complexity Gap For Sink-Finding in USOs. In: Morin, P., Suri, S. (eds) Algorithms and Data Structures. WADS 2023. Lecture Notes in Computer Science, vol 14079. Springer, Cham. https://doi.org/10.1007/978-3-031-38906-1_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-38906-1_47

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-38905-4

  • Online ISBN: 978-3-031-38906-1

  • eBook Packages: Computer ScienceComputer Science (R0)