Abstract
We give a \((1.796+\epsilon )\)-approximation for the minimum sum coloring problem on chordal graphs, improving over the previous 3.591-approximation by Gandhi et al. [2005]. To do so, we also design the first PTAS for the maximum k-colorable subgraph problem in chordal graphs.
I. DeHaan—Supported by an NSERC Undergraduate Student Research Award held at the University of Alberta.
Z. Friggstad—Supported by an NSERC Discovery Grant and Accelerator Supplement.
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Addario-Berry, L., Kennedy, W., King, A., Li, Z., Reed, B.: Finding a maximum-weight induced k-partite subgraph of an i-triangulated graph. Discret. Appl. Math. 158(7), 765–770 (2010)
Bar-Noy, A., Bellare, M., Halldórsson, M.M., Shachnai, H., Tamir, T.: On chromatic sums and distributed resource allocation. Inf. Comput. 140(2), 183–202 (1998)
Bar-Noy, A., Kortsarz, G.: The minimum color-sum of bipartite graphs. J. Algorithms 28(2), 339–365 (1998)
Chakaravarthy, V., Roy, S.: Approximating maximum weight k-colorable subgraphs in chordal graphs. Inf. Process. Lett. 109(7), 365–368 (2009)
Chakrabarty, D., Swamy, C.: Facility location with client latencies: linear programming based techniques for minimum latency problems. In: Günlük, O., Woeginger, G.J. (eds.) IPCO 2011. LNCS, vol. 6655, pp. 92–103. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20807-2_8
Feige, U.: Approximating maximum clique by removing subgraphs. SIAM J. Discret. Math. 18(2), 219–225 (2004)
Feige, U., Kilian, J.: Zero knowledge and the chromatic number. J. Comput. Syst. Sci. 57(2), 187–199 (1998)
Gandhi, R., Halldórsson, M.M., Kortsarz, G., Shachnai, H.: Improved bounds for sum multicoloring and scheduling dependent jobs with minsum criteria. In: Persiano, G., Solis-Oba, R. (eds.) WAOA 2004. LNCS, vol. 3351, pp. 68–82. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31833-0_8
Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Academic Press (1980)
Gonen, M.: Coloring problems on interval graphs and trees. Master’s thesis, School of Computer Science, The Open University, Tel-Aviv (2001)
Halldórsson, M.M., Kortsarz, G., Shachnai, H.: Sum coloring interval and k-claw free graphs with application to scheduling dependent jobs. Algorithmica 37, 187–209 (2003)
Halldórsson, M., Kortsarz, G.: Tools for multicoloring with applications to planar graphs and partial k-trees. J. Algorithms 42(2), 334–366 (2002)
Halldórsson, M., Kortsarz, G., Sviridenko, M.: Sum edge coloring of multigraphs via configuration LP. ACM Trans. Algorithms 7(2), 1–21 (2011)
Kubicka, E.: The chromatic sum and efficient tree algorithms. Ph.D. thesis, Western Michigan University (1989)
Malafiejski, M., Giaro, K., Janczewski, R., Kubale, M.: Sum coloring of bipartite graphs with bounded degree. Algorithmica 40, 235–244 (2004)
Marx, D.: Complexity results for minimum sum edge coloring. Discret. Appl. Math. 157(5), 1034–1045 (2009)
Pereira, F.M.Q., Palsberg, J.: Register allocation via coloring of chordal graphs. In: Yi, K. (ed.) APLAS 2005. LNCS, vol. 3780, pp. 315–329. Springer, Heidelberg (2005). https://doi.org/10.1007/11575467_21
Post, I., Swamy, C.: Linear programming-based approximation algorithms for multi-vehicle minimum latency problems. In: Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 512–531 (2014)
Yannakakis, M., Gavril, F.: The maximum k-colorable subgraph problem for chordal graphs. Inf. Process. Lett. 24(2), 133–137 (1987)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
DeHaan, I., Friggstad, Z. (2023). Approximate Minimum Sum Colorings and Maximum k-Colorable Subgraphs of Chordal Graphs. In: Morin, P., Suri, S. (eds) Algorithms and Data Structures. WADS 2023. Lecture Notes in Computer Science, vol 14079. Springer, Cham. https://doi.org/10.1007/978-3-031-38906-1_22
Download citation
DOI: https://doi.org/10.1007/978-3-031-38906-1_22
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-38905-4
Online ISBN: 978-3-031-38906-1
eBook Packages: Computer ScienceComputer Science (R0)