Skip to main content

Colouring Cities: A Citizen Science Platform for Knowledge Production on the Building Stock - Potentials for Urban and Architectural History

  • Conference paper
  • First Online:
Research and Education in Urban History in the Age of Digital Libraries (UHDL 2023)

Abstract

Colouring Cities is an open digital platform that enables the collaborative collection and visualization of building data. The platform provides a unique opportunity to collect spatial information on the characteristics, performance, and evolution of building stocks, thereby bridging existing data gaps and supporting sustainable urban development. By harnessing the power of crowdsourcing, Colouring Cities allows researchers, architects, and urban planners to gather spatial information in a more efficient and cost-effective manner than traditional methods. The user-friendly interface and comprehensive data management capabilities make Colouring Cities a valuable citizen science platform, empowering everyone to collect, collate, visualize and share data. The paper reports on the platform and the worldwide activities as well as experiences in two case studies, Colouring London (UK) and Colouring Dresden (Germany). It highlights the platform’s potential for knowledge production and transfer in urban and architectural history research, as well as digital humanities. While there is a need for further technical development and research on the impact of citizen science, the platform demonstrates great potential in these fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://web.stanford.edu/group/spatialhistory/nolli.

  2. 2.

    https://github.com/microsoft/GlobalMLBuildingFootprints.

  3. 3.

    The Virtual Map Forum (https://kartenforum.slub-dresden.de) contains numerous geo-referenced sources on Dresden, such as the Damage Map of 1946, which shows the different degrees of destruction of Dresden buildings after the end of the Second World War (https://slubdd.de/schadensplan).

  4. 4.

    https://www.deutschefotothek.de.

  5. 5.

    https://commons.wikimedia.org/wiki/category:dresden.

  6. 6.

    To get an automated count for four subcategories, please refer to https://petscan.wmflabs.org/?psid=24776495.

  7. 7.

    The first address book for Dresden was published in 1702, from 1800 to 1944 they are available digitally almost without gaps (https://digital.slub-dresden.de/kollektionen/72).

  8. 8.

    https://colouringlondon.org.

  9. 9.

    https://github.com/colouring-cities.

  10. 10.

    https://colouring.dresden.ioer.info.

  11. 11.

    https://github.com/colouring-cities/colouring-core.

  12. 12.

    https://scholia.toolforge.org/

  13. 13.

    https://zenodo.org/search?page=1&size=20&q=keywords:%22Colouring%20Dresden%22.

  14. 14.

    https://de.wikiversity.org/wiki/Projekt:Colouring_Dresden.

  15. 15.

    https://www.nfdi4earth.de/.

  16. 16.

    https://4memory.de/.

  17. 17.

    https://wiki.genealogy.net/.

  18. 18.

    https://database.factgrid.de/wiki/Main_Page.

References

  1. Hudson, P.: Urban characterisation; expanding applications for, and new approaches to building attribute data capture. The Historic Environ.: Policy & Practice 9, 306–327 (2018). https://doi.org/10.1080/17567505.2018.1542776

    Article  Google Scholar 

  2. Münster, S., et al.: Where are we now on the Road to 4D Urban History Research and Discovery? ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences. VIII-M-1–2021, pp. 109–116 (2021). https://doi.org/10.5194/isprs-annals-VIII-M-1-2021-109-2021

  3. Sikder, S.K., Behnisch, M., Herold, H., Koetter, T.: Geospatial analysis of building structures in megacity Dhaka: the use of spatial statistics for promoting data-driven decision-making. J. Geovisualization Spatial Analysis 3(1), 1–14 (2019). https://doi.org/10.1007/s41651-019-0029-y

    Article  Google Scholar 

  4. Meinel, G., Hecht, R., Herold, H.: Analyzing building stock using topographic maps and GIS. Building Res. Inf. 37, 468–482 (2009). https://doi.org/10.1080/09613210903159833

    Article  Google Scholar 

  5. Tooke, T.R., Coops, N.C., Webster, J.: Predicting building ages from LiDAR data with random forests for building energy modeling. Energy and Build. 68, 603–610 (2014). https://doi.org/10.1016/j.enbuild.2013.10.004

    Article  Google Scholar 

  6. Aksözen, M., Hassler, U., Rivallain, M., Kohler, N.: Mortality analysis of an urban building stock. Building Research & Inf. 45, 259–277 (2017). https://doi.org/10.1080/09613218.2016.1152531

    Article  Google Scholar 

  7. Evans, S., Liddiard, R., Steadman, P.: 3DStock: a new kind of three-dimensional model of the building stock of England and Wales, for use in energy analysis. Environ. Planning B: Urban Analytics City Science. 44, 227–255 (2017). https://doi.org/10.1177/0265813516652898

    Article  Google Scholar 

  8. Miatto, A., Schandl, H., Tanikawa, H.: How important are realistic building lifespan assumptions for material stock and demolition waste accounts? Resour. Conserv. Recycl. 122, 143–154 (2017). https://doi.org/10.1016/j.resconrec.2017.01.015

    Article  Google Scholar 

  9. Biljecki, F., Sindram, M.: Estimating building age with 3D GIS. ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci. IV-4/W5, pp. 17–24 (2017). https://doi.org/10.5194/isprs-annals-IV-4-W5-17-2017

  10. Kohler, N., Hassler, U.: The building stock as a research object. Building Res. Inf. 30, 226–236 (2002). https://doi.org/10.1080/09613210110102238

    Article  Google Scholar 

  11. Huuhka, S., Lahdensivu, J.: Statistical and geographical study on demolished buildings. Building Res. Inf. 44, 73–96 (2016). https://doi.org/10.1080/09613218.2014.980101

    Article  Google Scholar 

  12. Bradley, P.E., Kohler, N.: Methodology for the survival analysis of urban building stocks. Building Res. Inf. 35, 529–542 (2007). https://doi.org/10.1080/09613210701266939

    Article  Google Scholar 

  13. Hudson, P., Dennett, A., Russell, T., Smith, D.: Colouring London–a crowdsourcing platform for geospatial data related to London’s building stock. In: Proceedings of the 27th Annual Gis Research UK Conference. pp. 23–26. , Newcastle University, Newcastle, UK (2019)

    Google Scholar 

  14. Hecht, R., Rieche, T.: Mit einer Citizen-Science-Plattform Gebäudewissen kartieren, erforschen und vermitteln und dabei klimagerechte Architektur unterstützen. gis.Business pp. 34–36 (2023). https://doi.org/10.26084/PGVC-TX74

  15. Hudson, P. (ed): Colouring London and the Colouring Cities Open Manual, Wiki (2023). https://github.com/colouring-cities/manual/wiki/

  16. Hecht, R., Meinel, G., Buchroithner, M.: Automatic identification of building types based on topographic databases – a comparison of different data sources. Int. J. Cartography 1, 18–31 (2015). https://doi.org/10.1080/23729333.2015.1055644

    Article  Google Scholar 

  17. Herold, H., Hecht, R.: 3D reconstruction of urban history based on old maps. In: Münster, S., Friedrichs, K., Niebling, F., Seidel-Grzesinska, A. (eds.) UHDL/DECH -2017. CCIS, vol. 817, pp. 63–79. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76992-9_5

    Chapter  Google Scholar 

  18. Wu, M., Zeng, W., Fu, C.-W.: FloorLevel-Net: recognizing floor-level lines with height-attention-guided multi-task learning. IEEE Trans. on Image Process. 30, 6686–6699 (2021). https://doi.org/10.1109/TIP.2021.3096090

    Article  Google Scholar 

  19. Fan, H., Zipf, A., Fu, Q., Neis, P.: Quality assessment for building footprints data on OpenStreetMap. Int. J. Geogr. Inf. Sci. 28, 700–719 (2014). https://doi.org/10.1080/13658816.2013.867495

    Article  Google Scholar 

  20. Hecht, R., Kalla, M., Krüger, T.: Crowd-sourced data collection to support automatic classification of building footprint data. Proc. Int. Cartogr. Assoc. 1, 1–7 (2018). https://doi.org/10.5194/ica-proc-1-54-2018

    Article  Google Scholar 

  21. Alhamwi, A., Medjroubi, W., Vogt, T., Agert, C.: OpenStreetMap data in modelling the urban energy infrastructure: a first assessment and analysis. Energy Procedia. 142, 1968–1976 (2017). https://doi.org/10.1016/j.egypro.2017.12.397

    Article  Google Scholar 

  22. Biljecki, F.: Exploration of open data in Southeast Asia to generate 3D building models. ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci. VI-4/W1–2020, pp. 37–44 (2020). https://doi.org/10.5194/isprs-annals-VI-4-W1-2020-37-2020

  23. Hecker, S., Haklay, M., Bowser, A., Makuch, Z., Vogel, J., Bonn, A.: Citizen Science: Innovation in Open Science. Society and Policy, UCL Press (2018)

    Book  Google Scholar 

  24. Vohland, K., et al. (eds.): The Science of Citizen Science. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-58278-4

    Book  Google Scholar 

  25. Haklay, M.: Citizen science and volunteered geographic information: overview and typology of participation. In: Sui, D., Elwood, S., Goodchild, M. (eds.) Crowdsourcing Geographic Knowledge, pp. 105–122. Springer, Netherlands, Dordrecht (2013)

    Chapter  Google Scholar 

  26. Shirk, J.L., et al.: Public Participation in Scientific Research: a Framework for Deliberate Design. E&S. 17, art29 (2012). https://doi.org/10.5751/ES-04705-170229

  27. Bemme, J., Munke, M.: Digitale Wissenschaftskommunikation im und mit dem Wikiversum. Erfahrungen aus der SLUB Dresden. 027.7 Zeitschrift für Bibliothekskultur / Journal for Library Culture. 9, (2022). https://doi.org/10.21428/1bfadeb6.4112166b

  28. Mazumdar, S., et al.: Citizen science technologies and new opportunities for participation. In: Hecker, S., Haklay, M., Bowser, A., Makuch, Z., Vogel, J., Bonn, A. (eds.) Citizen Science - Innovation in Open Science, Society and Policy, pp. 303–320. UCL Press, London (2018)

    Chapter  Google Scholar 

  29. Land-Zandstra, A., Agnello, G., Gültekin, Y.S.: Participants in citizen science. In: Vohland, K., et al. (eds.) The Science of Citizen Science, pp. 243–259. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-58278-4_13

    Chapter  Google Scholar 

  30. Schaefer, T., Kieslinger, B., Brandt, M., van den Bogaert, V.: Evaluation in citizen science: the art of tracing a moving target. In: Vohland, K., et al. (eds.) The Science of Citizen Science, pp. 495–514. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-58278-4_25

    Chapter  Google Scholar 

  31. Kieslinger, B., Schäfer, T., Heigl, F., Dörler, D., Richter, A., Bonn, A.: Evaluating citizen science - towards an open framework. In: Hekler, S., Haklay, M., Bowser, A., Vogel, J., Bonn, A. (eds.) Citizen Science - Innovation in Open Science, Society and Policy, pp. 81–95. UCL Press, London (2018)

    Chapter  Google Scholar 

  32. Balázs, B., Mooney, P., Nováková, E., Bastin, L., Jokar Arsanjani, J.: Data quality in citizen science. In: Vohland, K., et al. (eds.) The Science of Citizen Science, pp. 139–157. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-58278-4_8

    Chapter  Google Scholar 

  33. Hecht, R., Kunze, C., Hahmann, S.: Measuring completeness of building footprints in openstreetmap over space and time. IJGI. 2, 1066–1091 (2013). https://doi.org/10.3390/ijgi2041066

    Article  Google Scholar 

  34. Zhou, Q., Zhang, Y., Chang, K., Brovelli, M.A.: Assessing OSM building completeness for almost 13,000 cities globally. International Journal of Digital Earth. 15, 2400–2421 (2022). https://doi.org/10.1080/17538947.2022.2159550

    Article  Google Scholar 

  35. Biljecki, F., Chow, Y.S., Lee, K.: Quality of crowdsourced geospatial building information: a global assessment of OpenStreetMap attributes. Build. Environ. 237, 110295 (2023). https://doi.org/10.1016/j.buildenv.2023.110295

    Article  Google Scholar 

  36. Roper, J., Hudson, P., Petersen, H., Pettit, C., Russell, T., Ng, M.: Colouring Australia: a participatory open data platform. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences. X-4-W3–2022, pp. 229–235 (2022). https://doi.org/10.5194/isprs-annals-X-4-W3-2022-229-2022

  37. Biljecki, F., Chew, L.Z.X., Milojevic-Dupont, N., Creutzig, F.: Open Government Geospatial Data on Buildings for Planning Sustainable and Resilient Cities (2021). http://arxiv.org/abs/2107.04023

  38. Stoltz, D.: Kartenforum und Virtuelles Kartenforum - Ein Werkstattbericht zum Refactoring. In: Munke, M.(ed.) Landes- und Regionalgeschichte digital Angebote - Bedarfe - Perspektiven. pp. 95–105. Thelem, Dresden (2022). https://doi.org/10.25366/2021.31

  39. Hosseini, K., Wilson, D.C.S., Beelen, K., McDonough, K.: MapReader: a computer vision pipeline for the semantic exploration of maps at scale. In: Proceedings of the 6th ACM SIGSPATIAL International Workshop on Geospatial Humanities, pp. 8–19. ACM, Seattle Washington (2022)

    Google Scholar 

  40. Jäger, J.: Fotografie und Geschichte. Campus, Frankfurt /New York (2009)

    Google Scholar 

  41. Steadman, P., Evans, S., Liddiard, R., Godoy-Shimizu, D., Ruyssevelt, P., Humphrey, D.: Building stock energy modelling in the UK: the 3DStock method and the London building stock model. Buildings and Cities 1, 100–119 (2020). https://doi.org/10.5334/bc.52

    Article  Google Scholar 

  42. Tanikawa, H., Hashimoto, S.: Urban stock over time: spatial material stock analysis using 4d-GIS. Building Res. Inf. 37, 483–502 (2009). https://doi.org/10.1080/09613210903169394

    Article  Google Scholar 

  43. Roumpani, F., Hudson, P., Hudson-Smith, A.: The use of historical data in rule-based modelling for scenarios to improve resilience within the building stock. The Historic Environ.: Policy & Practice 9, 328–345 (2018). https://doi.org/10.1080/17567505.2018.1517142

    Article  Google Scholar 

  44. Stanilov, K., Batty, M.: Exploring the historical determinants of urban growth patterns through cellular automata: determinants of urban growth. Trans. GIS 15, 253–271 (2011). https://doi.org/10.1111/j.1467-9671.2011.01254.x

    Article  Google Scholar 

  45. Hecht, R., Rieche, T., Neumann, M.: Dokumentation des Workshops zum Ideensprint der Citizen Science Projektidee “Baukultur und klimagerechte Architektur in Dresden – Gebäudewissen kartieren, erforschen und vermitteln” (2022). https://doi.org/10.5281/zenodo.7101800

  46. Hecht, R., Danke, T., Rieche, T., Gruhler, K., Kriesten, T., Schinke, R.: Dokumentation des “Workshops zur Ausarbeitung der Gebäudemerkmale und deren Erfassung” im Rahmen des Citizen Science Projektes “Colouring Dresden” (2023). https://doi.org/10.5281/zenodo.7624511

  47. Maiwald, H., Schwarz, J., Abrahamczyk, L., Kaufmann, C.: Das Hochwasser 2021: Ingenieuranalyse der Bauwerksschäden. Bautechnik 99, 878–890 (2022). https://doi.org/10.1002/bate.202200062

    Article  Google Scholar 

  48. Oudin Åström, D., et al.: The effect of heat waves on mortality in susceptible groups: a cohort study of a mediterranean and a northern European City. Environ Health. 14, 30 (2015). https://doi.org/10.1186/s12940-015-0012-0

    Article  Google Scholar 

  49. van Noordwijk, T. (C.G.E.), et al.: Creating positive environmental impact through citizen science. In: Vohland, K., et al. (eds.) The Science of Citizen Science, pp. 373–395. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-58278-4_19

  50. Cappa, F., Franco, S., Rosso, F.: Citizens and cities: Leveraging citizen science and big data for sustainable urban development. Bus Strat Env. 31, 648–667 (2022). https://doi.org/10.1002/bse.2942

    Article  Google Scholar 

  51. Fritz, S., et al.: Citizen science and the United Nations sustainable development goals. Nat Sustain. 2, 922–930 (2019). https://doi.org/10.1038/s41893-019-0390-3

    Article  Google Scholar 

  52. Paulmann, J., et al.: NFDI4Memory. Consortium for the historically oriented humanities. Proposal for the National Research Data Infrastructure (NFDI) (2022). https://doi.org/10.5281/zenodo.7428489

Download references

Acknowledgments

The project Colouring Dresden is financially supported by prize money from the Citizen Science Competition ‘Auf die Plätze! Citizen Science in deiner Stadt’, funded by the German Federal Ministry of Education and Research and jointly coordinated by Wissenschaft im Dialog gGmbH and the Museum für Naturkunde Berlin. We would like to thank all our partners of Colouring London and Colouring Dresden. Special thanks go to the Colouring Cities Research Programme and the people of this international network. Mateusz Konieczny in particular is to be thanked for his valuable feedback related to OpenStreetMap.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Hecht .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hecht, R., Danke, T., Herold, H., Hudson, P., Munke, M., Rieche, T. (2023). Colouring Cities: A Citizen Science Platform for Knowledge Production on the Building Stock - Potentials for Urban and Architectural History. In: Münster, S., Pattee, A., Kröber, C., Niebling, F. (eds) Research and Education in Urban History in the Age of Digital Libraries. UHDL 2023. Communications in Computer and Information Science, vol 1853. Springer, Cham. https://doi.org/10.1007/978-3-031-38871-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-38871-2_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-38870-5

  • Online ISBN: 978-3-031-38871-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics