Skip to main content

A 3D-Printed Thermoresponsive Artificial Venus Flytrap Lobe Based on a Multilayer of Shape Memory Polymers

  • Conference paper
  • First Online:
Biomimetic and Biohybrid Systems (Living Machines 2023)

Abstract

Plant motion patterns and structures have inspired designers, researchers and engineers for centuries. Recent advancements in analyzing and manufacturing technologies have allowed for a deeper understanding of biological principles and their application to bioinspired engineered systems. This has advanced 3D printing of thermoresponsive materials, like shape memory polymers. These materials enable the translation and creation of complex bioinspired mobile structures. In this study, we use novel 3D printable shape memory polymers in a multi-material, multilayer system to create double curved surfaces that can change their curvature from concave to convex, like the lobes of a Venus flytrap. The artificial trap lobes can be manufactured by identifying suitable material combinations, bonding methods and programming parameters. In this study, the system parameters to achieve a motion and the closing behavior in response to a temperature change are characterized. The resulting trap lobe represents a successful translation of the prestress ratios and layered morphology found in the biological model into an autonomous artificial Venus flytrap.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Meder, F., Armiento, S., Naselli, G.A., et al.: Biohybrid generators based on living plants and artificial leaves: influence of leaf motion and real wind outdoor energy harvesting. Bioinspir. Biomim. 16, 055009 (2021). https://doi.org/10.1088/1748-3190/ac1711

    Article  Google Scholar 

  2. Mazzolai, B., Laschi, C.: A vision for future bioinspired and biohybrid robots. Sci. Robot. 5 (2020). https://doi.org/10.1126/scirobotics.aba6893

  3. Mazzolai, B., Laschi, C., Dario, P., et al.: The plant as a biomechatronic system. Plant Sig. Behav. 5, 90–93 (2010). https://doi.org/10.4161/psb.5.2.10457

    Article  Google Scholar 

  4. Sachse, R., Westermeier, A., Mylo, M., et al.: Snapping mechanics of the Venus flytrap (Dionaea muscipula). Proc. Natl. Acad. Sci. U.S.A. 117, 16035–16042 (2020). https://doi.org/10.1073/pnas.2002707117

    Article  Google Scholar 

  5. Westermeier, A.S., Sachse, R., Poppinga, S., et al.: How the carnivorous waterwheel plant (Aldrovanda vesiculosa) snaps. Proc. Biol. Sci. 285 (2018). https://doi.org/10.1098/rspb.2018.0012

  6. Poppinga, S., Bauer, U., Speck, T., et al.: Motile traps. In: Ellison, A., Adamec, L. (eds.) Carnivorous Plants: Physiology, Ecology, and Evolution, pp. 180–193. Oxford University Press (2018). https://doi.org/10.1093/oso/9780198779841.003.0014

  7. Poppinga, S., Kampowski, T., Metzger, A., et al.: Comparative kinematical analyses of Venus flytrap (Dionaea muscipula) snap traps. Beilstein J. Nanotechnol. 7, 664–674 (2016). https://doi.org/10.3762/bjnano.7.59

    Article  Google Scholar 

  8. Poppinga, S., Joyeux, M.: Different mechanics of snap-trapping in the two closely related carnivorous plants Dionaea muscipula and Aldrovanda vesiculosa. Phys. Rev. E 84, 041928–041935 (2011). https://doi.org/10.1103/PhysRevE.84.041928

    Article  Google Scholar 

  9. Forterre, Y., Skotheim, J.M., Dumais, J., et al.: How the Venus flytrap snaps. Nature 433, 421–425 (2005). https://doi.org/10.1038/nature03185

    Article  Google Scholar 

  10. Kim, S.-W., Koh, J.-S., Lee, J.-G., et al.: Flytrap-inspired robot using structurally integrated actuation based on bistability and a developable surface. Bioinspir. Biomim. 9, 36004 (2014). https://doi.org/10.1088/1748-3182/9/3/036004

    Article  Google Scholar 

  11. Zhang, Z., Chen, D., Wu, H., et al.: Non-contact magnetic driving bioinspired Venus flytrap robot based on bistable anti-symmetric CFRP structure. Compos. Struct. 135, 17–22 (2016). https://doi.org/10.1016/j.compstruct.2015.09.015

    Article  Google Scholar 

  12. Zhang, Z., Li, X., Yu, X., et al.: Magnetic actuation bionic robotic gripper with bistable morphing structure. Compos. Struct. 229, 111422 (2019). https://doi.org/10.1016/j.compstruct.2019.111422

    Article  Google Scholar 

  13. Pal, A., Goswami, D., Martinez, R.V.: Elastic energy storage enables rapid and programmable actuation in soft machines. Adv. Funct. Mater. 30 (2019). https://doi.org/10.1002/adfm.201906603

  14. Lunni, D., Cianchetti, M., Filippeschi, C., et al.: Plant‐inspired soft bistable structures based on hygroscopic electrospun nanofibers. Adv. Mater. Interfaces (2020). https://doi.org/10.1002/admi.201901310

  15. Wu, S., Baker, G.L., Yin, J., et al.: Fast thermal actuators for soft robotics. Soft Robot. 9, 1031–1039 (2022). https://doi.org/10.1089/soro.2021.0080

    Article  Google Scholar 

  16. Riley, K.S., Ang, K.J., Martin, K.A., et al.: Encoding multiple permanent shapes in 3D printed structures. Mater. Des. 194, 108888 (2020). https://doi.org/10.1016/j.matdes.2020.108888r

    Article  Google Scholar 

  17. Tauber, F.J., Auth, P., Teichmann, J., et al.: Novel motion sequences in plant-inspired robotics: combining inspirations from snap-trapping in two plant species into an artificial venus flytrap demonstrator. Biomimetics 7, 99 (2022). https://doi.org/10.3390/biomimetics7030099

    Article  Google Scholar 

  18. Li, W., Matsuhisa, N., Liu, Z., et al.: An on-demand plant-based actuator created using conformable electrodes. Nat. Electron. 4, 134–142 (2021). https://doi.org/10.1038/s41928-020-00530-4

    Article  Google Scholar 

  19. Tauber, F.J., et al.: Unit cell based artificial Venus flytrap. In: Hunt, A., et al. (eds.) Biomimetic and Biohybrid Systems. Living Machines 2022. LNCS, vol. 13548, pp. 1–12. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20470-8_1

    Chapter  Google Scholar 

  20. Bothe, M., Pretsch, T.: Two-way shape changes of a shape-memory poly (ester urethane). Macromol. Chem. Phys. 213, 2378–2385 (2012). https://doi.org/10.1002/macp.201200096

    Article  Google Scholar 

  21. Langbein, S., Czechowicz, A.: Formgedächtnistechnik: Entwickeln, Testen und Anwenden, 2nd überarbeitete und erweiterte Auflage. Springer, Wiesbaden (2021). https://doi.org/10.1007/978-3-658-17904-5

  22. Chalissery, D., Schönfeld, D., Walter, M., et al.: Fused filament fabrication of actuating objects. Macromol. Mater. Eng. 307, 2200214 (2022). https://doi.org/10.1002/mame.202200214

    Article  Google Scholar 

  23. Sunkara, V., Park, D.-K., Hwang, H., et al.: Simple room temperature bonding of thermoplastics and poly (dimethylsiloxane). Lab Chip 11, 962–965 (2011). https://doi.org/10.1039/c0lc00272k

    Article  Google Scholar 

  24. Carrell, C.S., McCord, C.P., Wydallis, R.M., et al.: Sealing 3D-printed parts to poly (dimethylsiloxane) for simple fabrication of Microfluidic devices. Anal. Chim. Acta 1124, 78–84 (2020). https://doi.org/10.1016/j.aca.2020.05.014

    Article  Google Scholar 

  25. Esser, F., et al.: Adaptive biomimetic actuator systems reacting to various stimuli by and combining two biological snap-trap mechanics. In: Martinez-Hernandez, U., et al. (eds.) Living Machines 2019. LNCS (LNAI), vol. 11556, pp. 114–121. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24741-6_10

    Chapter  Google Scholar 

Download references

Acknowledgement

Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy – EXC-2193/1 – 390951807. We thank the AG Technik of the Institute for Biology 2 of University of Freiburg for the construction of the biaxial stretching device. This work was supported by Fraunhofer Cluster of Excellence “Programmable Materials” under PSP elements 40-01922-2500-00002 and 40-03420-2500-00003. T.P. wishes to thank the European Regional Development Fund for financing a large part of the laboratory equipment (project 85007031).We thank Laura Mahoney from the livMatS Writer studio for spellchecking and improving the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Falk J. Tauber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tauber, F.J., Scheckenbach, F., Walter, M., Pretsch, T., Speck, T. (2023). A 3D-Printed Thermoresponsive Artificial Venus Flytrap Lobe Based on a Multilayer of Shape Memory Polymers. In: Meder, F., Hunt, A., Margheri, L., Mura, A., Mazzolai, B. (eds) Biomimetic and Biohybrid Systems. Living Machines 2023. Lecture Notes in Computer Science(), vol 14157. Springer, Cham. https://doi.org/10.1007/978-3-031-38857-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-38857-6_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-38856-9

  • Online ISBN: 978-3-031-38857-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics