Abstract
Robots are becoming more and important and can support humans in all possible areas of life. Due to their inherent compliance, soft robots are ideal for human-machine interaction. In contrast to their material compliance, soft robots such as walkers are often still powered and controlled by rigid and bulky electronics. In this study, we show a walking compliant robot, which is 3D printed by FDM printers, controlled by soft, pneumatic logic gates, and powered only by a source of constant pressurized air. The robots form and gait are inspired by the stick insect (Carausius morosus). To mimic the walking gait in fast walking on horizontal planes and the interdependency of the legs, we developed bioinspired pneumatic actuators functioning as legs and implemented a novel pneumatic logic circuit. In this circuit, one pair of legs can only transition from stance to swing when the other pair of legs has touched the ground. Our results demonstrate how the field of soft robotics can advance with critical technology such as soft, pneumatic logic gates being printed on FDM printers. We envision that our system will continue to evolve with the incorporation of even more advanced control circuits, enabling the robot to operate at even higher speed. The lifting capacity has the potential to be further optimized and an on-board pressure supply system can be implemented, allowing for more efficient and effective performance. This will ultimately lead to a fully autonomous soft machine.
Keywords
- soft valve
- soft robot
- insect locomotion
- biomimetics
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Siciliano, B., Khatib, O. (eds.): Springer Handbook of Robotics. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-32552-1
Graetz, G., Michaels, G.: Robots at work. Rev. Econ. Stat. 100, 753–768 (2018). https://doi.org/10.1162/rest_a_00754
Hering, E., Martin, R., Gutekunst, J., Kempkes, J.: Antriebstechnik. In: Hering, E., Martin, R., Gutekunst, J., Kempkes, J. (eds.) Elektrotechnik und Elektronik für Maschinenbauer. V, pp. 379–417. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-662-54296-5_5
Cheah, C.C., Haghighi, R.: Motion control. In: Nee, A.Y.C. (ed.) Handbook of Manufacturing Engineering and Technology, pp. 1889–1932. Springer, London (2015). https://doi.org/10.1007/978-1-4471-4670-4_93
Bjoern, M., Susanne, O.-T., Harald, S., et al.: Injury risk quantification for industrial robots in collaborative operation with humans. In: ISR 2010 41st International Symposium on Robotics) and ROBOTIK 2010 (ed) ISR 2010 (41st International Symposium on Robotics) and ROBOTIK 2010 (6th German Conference on Robotics), pp. 1–6 (2010)
de Santis, A., Siciliano, B., de Luca, A., et al.: An atlas of physical human–robot interaction. Mech. Mach. Theory 43, 253–270 (2008). https://doi.org/10.1016/j.mechmachtheory.2007.03.003
Krieger, R., Staab, H., Matthias, B., et al.: Industrieroboter als Produktionsassistenten für die Automobilmontage - Industrial Robots as Manufacturing Assistants for Automotive Assembly. VDI Berichte Band 2012, München (2008)
Dickinson, M.H., Farley, C.T., Full, R.J., et al.: How animals move: an integrative view. Science 288, 100–106 (2000). https://doi.org/10.1126/science.288.5463.100
Wehner, M., Truby, R.L., Fitzgerald, D.J., et al.: An integrated design and fabrication strategy for entirely soft, autonomous robots. Nature 536, 451–455 (2016). https://doi.org/10.1038/nature19100
Altenbach, H.: Kontinuumsmechanik: Einführung in die materialunabhängigen und materialabhängigen Gleichungen, 2nd edn. Springer, Heidelberg (2012)
Rus, D., Tolley, M.T.: Design, fabrication and control of soft robots. Nature 521, 467–475 (2015). https://doi.org/10.1038/nature14543
Polygerinos, P., Wang, Z., Galloway, K.C., et al.: Soft robotic glove for combined assistance and at-home rehabilitation. Robot. Auton. Syst. 73, 135–143 (2015). https://doi.org/10.1016/j.robot.2014.08.014
Polygerinos, P., Correll, N., Morin, S.A., et al.: Soft robotics: review of fluid-driven intrinsically soft devices; manufacturing, sensing, control, and applications in human-robot interaction. Adv. Eng. Mater. 19, 1700016 (2017). https://doi.org/10.1002/adem.201700016
Whitesides, G.M.: Soft robotics. Angewandte Chemie (International ed. in English) 57, 4258–4273 (2018). https://doi.org/10.1002/anie.201800907
Shepherd, R.F., Ilievski, F., Choi, W., et al.: Multigait soft robot. Proc. Natl. Acad. Sci. U.S.A. 108, 20400–20403 (2011). https://doi.org/10.1073/pnas.1116564108
Martinez, R.V., Branch, J.L., Fish, C.R., et al.: Robotic tentacles with three-dimensional mobility based on flexible elastomers. Adv. Mater. (Deerfield Beach, Fla.) 25, 205–212 (2013). https://doi.org/10.1002/adma.201203002
Conrad, S., Teichmann, J., Knorr, N., et al.: 3D printed digital pneumatic logic for the control of soft robotic actuators. Manuscript submitted for publication (2023)
Rothemund, P., Ainla, A., Belding, L., et al.: A soft, bistable valve for autonomous control of soft actuators. Sci. Robot. 3 (2018). https://doi.org/10.1126/scirobotics.aar7986
Preston, D.J., Rothemund, P., Jiang, H.J., et al.: Digital logic for soft devices. Proc. Natl. Acad. Sci. U.S.A. 116, 7750–7759 (2019). https://doi.org/10.1073/pnas.1820672116
Preston, D.J., Jiang, H.J., Sanchez, V., et al.: A soft ring oscillator. Sci. Robot. 4 (2019). https://doi.org/10.1126/scirobotics.aaw5496
Xu, K., Perez-Arancibia, N.O.: Electronics-free logic circuits for localized feedback control of multi-actuator soft robots. IEEE Robot. Autom. Lett. 5, 3990–3997 (2020). https://doi.org/10.1109/LRA.2020.2982866
van Laake, L.C., de Vries, J., Kani, S.M., et al.: A fluidic relaxation oscillator for reprogrammable sequential actuation in soft robots. Matter 5, 2898–2917 (2022). https://doi.org/10.1016/j.matt.2022.06.002
Hubbard, J.D., Acevedo, R., Edwards, K.M., et al.: Fully 3D-printed soft robots with integrated fluidic circuitry. Sci. Adv. 7 (2021). https://doi.org/10.1126/sciadv.abe5257
Horowitz, P., Hill, W.: The Art of Electronics, 2 ed., 22. Printing. Cambridge Univ. Press, Cambridge (1989)
Cruse, H., Dürr, V., Schmitz, J.: Insect walking is based on a decentralized architecture revealing a simple and robust controller. Philos. Trans. A Math. Phys. Eng. Sci. 365, 221–250 (2007). https://doi.org/10.1098/rsta.2006.1913
Schilling, M., Hoinville, T., Schmitz, J., et al.: WalkNet, a bio-inspired controller for hexapod walking. Biol. Cybern. 107, 397–419 (2013). https://doi.org/10.1007/s00422-013-0563-5
Cruse, H., Bartling, C.: Movement of joint angles in the legs of a walking insect, Carausius morosus. J. Insect Physiol. 41, 761–771 (1995). https://doi.org/10.1016/0022-1910(95)00032-P
Dürr, V., Schmitz, J., Cruse, H.: Behaviour-based modelling of hexapod locomotion: linking biology and technical application. Arthropod. Struct. Dev. 33, 237–250 (2004). https://doi.org/10.1016/j.asd.2004.05.004
Prusa Research PrusaSlicer 2.4, Prag (2022)
Conrad, S., Speck, T., Tauber, F.J.: Tool changing 3D printer for rapid prototyping of advanced soft robotic elements. Bioinspir. Biomim. 16 (2021). https://doi.org/10.1088/1748-3190/ac095a
Esser, F., Steger, T., Bach, D., Masselter, T., Speck, T.: Development of novel foam-based soft robotic ring actuators for a biomimetic peristaltic pumping system. In: Mangan, M., Cutkosky, M., Mura, A., Verschure, P.F.M.J., Prescott, T., Lepora, N. (eds.) Living Machines 2017. LNCS (LNAI), vol. 10384, pp. 138–147. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63537-8_12
Bitter, R., Mohiuddin, T., Nawrocki, M.: LabVIEW 2019 & 2020: Advanced Programming Techniques. CRC Press, Boco Raton (2006)
Vögtlin Instruments GmbH: get red-y 5.7.1.1, Muttenz (2022)
Joan Charmant and contributors: Kinovea (2019)
Mosadegh, B., Polygerinos, P., Keplinger, C., et al.: Pneumatic networks for soft robotics that actuate rapidly. Adv. Funct. Mater. 24, 2163–2170 (2014). https://doi.org/10.1002/adfm.201303288
Drotman, D., Jadhav, S., Sharp, D., et al.: Electronics-free pneumatic circuits for controlling soft-legged robots. Sci. Robot. 6 (2021). https://doi.org/10.1126/scirobotics.aay2627
Decker, C.J., Jiang, H.J., Nemitz, M.P., et al.: Programmable soft valves for digital and analog control. Proc. Natl. Acad. Sci. U.S.A. 119 (2022). https://doi.org/10.1073/pnas.2205922119
Yap, H.K., Ng, H.Y., Yeow, C.-H.: High-force soft printable pneumatics for soft robotic applications. Soft Rob. 3, 144–158 (2016). https://doi.org/10.1089/soro.2016.0030
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Teichmann, J., Auth, P., Conrad, S., Speck, T., Tauber, F.J. (2023). An Insect-Inspired Soft Robot Controlled by Soft Valves. In: Meder, F., Hunt, A., Margheri, L., Mura, A., Mazzolai, B. (eds) Biomimetic and Biohybrid Systems. Living Machines 2023. Lecture Notes in Computer Science(), vol 14157. Springer, Cham. https://doi.org/10.1007/978-3-031-38857-6_31
Download citation
DOI: https://doi.org/10.1007/978-3-031-38857-6_31
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-38856-9
Online ISBN: 978-3-031-38857-6
eBook Packages: Computer ScienceComputer Science (R0)