Skip to main content

An Insect-Inspired Soft Robot Controlled by Soft Valves

  • 432 Accesses

Part of the Lecture Notes in Computer Science book series (LNAI,volume 14157)

Abstract

Robots are becoming more and important and can support humans in all possible areas of life. Due to their inherent compliance, soft robots are ideal for human-machine interaction. In contrast to their material compliance, soft robots such as walkers are often still powered and controlled by rigid and bulky electronics. In this study, we show a walking compliant robot, which is 3D printed by FDM printers, controlled by soft, pneumatic logic gates, and powered only by a source of constant pressurized air. The robots form and gait are inspired by the stick insect (Carausius morosus). To mimic the walking gait in fast walking on horizontal planes and the interdependency of the legs, we developed bioinspired pneumatic actuators functioning as legs and implemented a novel pneumatic logic circuit. In this circuit, one pair of legs can only transition from stance to swing when the other pair of legs has touched the ground. Our results demonstrate how the field of soft robotics can advance with critical technology such as soft, pneumatic logic gates being printed on FDM printers. We envision that our system will continue to evolve with the incorporation of even more advanced control circuits, enabling the robot to operate at even higher speed. The lifting capacity has the potential to be further optimized and an on-board pressure supply system can be implemented, allowing for more efficient and effective performance. This will ultimately lead to a fully autonomous soft machine.

Keywords

  • soft valve
  • soft robot
  • insect locomotion
  • biomimetics

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Siciliano, B., Khatib, O. (eds.): Springer Handbook of Robotics. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-32552-1

    CrossRef  MATH  Google Scholar 

  2. Graetz, G., Michaels, G.: Robots at work. Rev. Econ. Stat. 100, 753–768 (2018). https://doi.org/10.1162/rest_a_00754

    CrossRef  Google Scholar 

  3. Hering, E., Martin, R., Gutekunst, J., Kempkes, J.: Antriebstechnik. In: Hering, E., Martin, R., Gutekunst, J., Kempkes, J. (eds.) Elektrotechnik und Elektronik für Maschinenbauer. V, pp. 379–417. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-662-54296-5_5

    CrossRef  Google Scholar 

  4. Cheah, C.C., Haghighi, R.: Motion control. In: Nee, A.Y.C. (ed.) Handbook of Manufacturing Engineering and Technology, pp. 1889–1932. Springer, London (2015). https://doi.org/10.1007/978-1-4471-4670-4_93

    CrossRef  Google Scholar 

  5. Bjoern, M., Susanne, O.-T., Harald, S., et al.: Injury risk quantification for industrial robots in collaborative operation with humans. In: ISR 2010 41st International Symposium on Robotics) and ROBOTIK 2010 (ed) ISR 2010 (41st International Symposium on Robotics) and ROBOTIK 2010 (6th German Conference on Robotics), pp. 1–6 (2010)

    Google Scholar 

  6. de Santis, A., Siciliano, B., de Luca, A., et al.: An atlas of physical human–robot interaction. Mech. Mach. Theory 43, 253–270 (2008). https://doi.org/10.1016/j.mechmachtheory.2007.03.003

    CrossRef  MATH  Google Scholar 

  7. Krieger, R., Staab, H., Matthias, B., et al.: Industrieroboter als Produktionsassistenten für die Automobilmontage - Industrial Robots as Manufacturing Assistants for Automotive Assembly. VDI Berichte Band 2012, München (2008)

    Google Scholar 

  8. Dickinson, M.H., Farley, C.T., Full, R.J., et al.: How animals move: an integrative view. Science 288, 100–106 (2000). https://doi.org/10.1126/science.288.5463.100

    CrossRef  Google Scholar 

  9. Wehner, M., Truby, R.L., Fitzgerald, D.J., et al.: An integrated design and fabrication strategy for entirely soft, autonomous robots. Nature 536, 451–455 (2016). https://doi.org/10.1038/nature19100

    CrossRef  Google Scholar 

  10. Altenbach, H.: Kontinuumsmechanik: Einführung in die materialunabhängigen und materialabhängigen Gleichungen, 2nd edn. Springer, Heidelberg (2012)

    CrossRef  MATH  Google Scholar 

  11. Rus, D., Tolley, M.T.: Design, fabrication and control of soft robots. Nature 521, 467–475 (2015). https://doi.org/10.1038/nature14543

    CrossRef  Google Scholar 

  12. Polygerinos, P., Wang, Z., Galloway, K.C., et al.: Soft robotic glove for combined assistance and at-home rehabilitation. Robot. Auton. Syst. 73, 135–143 (2015). https://doi.org/10.1016/j.robot.2014.08.014

    CrossRef  Google Scholar 

  13. Polygerinos, P., Correll, N., Morin, S.A., et al.: Soft robotics: review of fluid-driven intrinsically soft devices; manufacturing, sensing, control, and applications in human-robot interaction. Adv. Eng. Mater. 19, 1700016 (2017). https://doi.org/10.1002/adem.201700016

    CrossRef  Google Scholar 

  14. Whitesides, G.M.: Soft robotics. Angewandte Chemie (International ed. in English) 57, 4258–4273 (2018). https://doi.org/10.1002/anie.201800907

  15. Shepherd, R.F., Ilievski, F., Choi, W., et al.: Multigait soft robot. Proc. Natl. Acad. Sci. U.S.A. 108, 20400–20403 (2011). https://doi.org/10.1073/pnas.1116564108

    CrossRef  Google Scholar 

  16. Martinez, R.V., Branch, J.L., Fish, C.R., et al.: Robotic tentacles with three-dimensional mobility based on flexible elastomers. Adv. Mater. (Deerfield Beach, Fla.) 25, 205–212 (2013). https://doi.org/10.1002/adma.201203002

  17. Conrad, S., Teichmann, J., Knorr, N., et al.: 3D printed digital pneumatic logic for the control of soft robotic actuators. Manuscript submitted for publication (2023)

    Google Scholar 

  18. Rothemund, P., Ainla, A., Belding, L., et al.: A soft, bistable valve for autonomous control of soft actuators. Sci. Robot. 3 (2018). https://doi.org/10.1126/scirobotics.aar7986

  19. Preston, D.J., Rothemund, P., Jiang, H.J., et al.: Digital logic for soft devices. Proc. Natl. Acad. Sci. U.S.A. 116, 7750–7759 (2019). https://doi.org/10.1073/pnas.1820672116

    CrossRef  Google Scholar 

  20. Preston, D.J., Jiang, H.J., Sanchez, V., et al.: A soft ring oscillator. Sci. Robot. 4 (2019). https://doi.org/10.1126/scirobotics.aaw5496

  21. Xu, K., Perez-Arancibia, N.O.: Electronics-free logic circuits for localized feedback control of multi-actuator soft robots. IEEE Robot. Autom. Lett. 5, 3990–3997 (2020). https://doi.org/10.1109/LRA.2020.2982866

    CrossRef  Google Scholar 

  22. van Laake, L.C., de Vries, J., Kani, S.M., et al.: A fluidic relaxation oscillator for reprogrammable sequential actuation in soft robots. Matter 5, 2898–2917 (2022). https://doi.org/10.1016/j.matt.2022.06.002

    CrossRef  Google Scholar 

  23. Hubbard, J.D., Acevedo, R., Edwards, K.M., et al.: Fully 3D-printed soft robots with integrated fluidic circuitry. Sci. Adv. 7 (2021). https://doi.org/10.1126/sciadv.abe5257

  24. Horowitz, P., Hill, W.: The Art of Electronics, 2 ed., 22. Printing. Cambridge Univ. Press, Cambridge (1989)

    Google Scholar 

  25. Cruse, H., Dürr, V., Schmitz, J.: Insect walking is based on a decentralized architecture revealing a simple and robust controller. Philos. Trans. A Math. Phys. Eng. Sci. 365, 221–250 (2007). https://doi.org/10.1098/rsta.2006.1913

    CrossRef  MathSciNet  Google Scholar 

  26. Schilling, M., Hoinville, T., Schmitz, J., et al.: WalkNet, a bio-inspired controller for hexapod walking. Biol. Cybern. 107, 397–419 (2013). https://doi.org/10.1007/s00422-013-0563-5

    CrossRef  MathSciNet  Google Scholar 

  27. Cruse, H., Bartling, C.: Movement of joint angles in the legs of a walking insect, Carausius morosus. J. Insect Physiol. 41, 761–771 (1995). https://doi.org/10.1016/0022-1910(95)00032-P

    CrossRef  Google Scholar 

  28. Dürr, V., Schmitz, J., Cruse, H.: Behaviour-based modelling of hexapod locomotion: linking biology and technical application. Arthropod. Struct. Dev. 33, 237–250 (2004). https://doi.org/10.1016/j.asd.2004.05.004

    CrossRef  Google Scholar 

  29. Prusa Research PrusaSlicer 2.4, Prag (2022)

    Google Scholar 

  30. Conrad, S., Speck, T., Tauber, F.J.: Tool changing 3D printer for rapid prototyping of advanced soft robotic elements. Bioinspir. Biomim. 16 (2021). https://doi.org/10.1088/1748-3190/ac095a

  31. Esser, F., Steger, T., Bach, D., Masselter, T., Speck, T.: Development of novel foam-based soft robotic ring actuators for a biomimetic peristaltic pumping system. In: Mangan, M., Cutkosky, M., Mura, A., Verschure, P.F.M.J., Prescott, T., Lepora, N. (eds.) Living Machines 2017. LNCS (LNAI), vol. 10384, pp. 138–147. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63537-8_12

    CrossRef  Google Scholar 

  32. Bitter, R., Mohiuddin, T., Nawrocki, M.: LabVIEW 2019 & 2020: Advanced Programming Techniques. CRC Press, Boco Raton (2006)

    Google Scholar 

  33. Vögtlin Instruments GmbH: get red-y 5.7.1.1, Muttenz (2022)

    Google Scholar 

  34. Joan Charmant and contributors: Kinovea (2019)

    Google Scholar 

  35. Mosadegh, B., Polygerinos, P., Keplinger, C., et al.: Pneumatic networks for soft robotics that actuate rapidly. Adv. Funct. Mater. 24, 2163–2170 (2014). https://doi.org/10.1002/adfm.201303288

    CrossRef  Google Scholar 

  36. Drotman, D., Jadhav, S., Sharp, D., et al.: Electronics-free pneumatic circuits for controlling soft-legged robots. Sci. Robot. 6 (2021). https://doi.org/10.1126/scirobotics.aay2627

  37. Decker, C.J., Jiang, H.J., Nemitz, M.P., et al.: Programmable soft valves for digital and analog control. Proc. Natl. Acad. Sci. U.S.A. 119 (2022). https://doi.org/10.1073/pnas.2205922119

  38. Yap, H.K., Ng, H.Y., Yeow, C.-H.: High-force soft printable pneumatics for soft robotic applications. Soft Rob. 3, 144–158 (2016). https://doi.org/10.1089/soro.2016.0030

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Joscha Teichmann or Falk J. Tauber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Teichmann, J., Auth, P., Conrad, S., Speck, T., Tauber, F.J. (2023). An Insect-Inspired Soft Robot Controlled by Soft Valves. In: Meder, F., Hunt, A., Margheri, L., Mura, A., Mazzolai, B. (eds) Biomimetic and Biohybrid Systems. Living Machines 2023. Lecture Notes in Computer Science(), vol 14157. Springer, Cham. https://doi.org/10.1007/978-3-031-38857-6_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-38857-6_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-38856-9

  • Online ISBN: 978-3-031-38857-6

  • eBook Packages: Computer ScienceComputer Science (R0)