Skip to main content

Abstract

Bioassessment is the process of using living organisms to assess the ecological health of a particular ecosystem. It typically relies on identifying specific organisms that are sensitive to changes in environmental conditions. Benthic macroinvertebrates are mostly used as bioindicators of the ecological status of freshwaters. However, a time-consuming process of species identification that requires high expertise represents one of the key obstacles to reliable bioassessment of aquatic ecosystems. Partial automation of this process using deep learning-based image classification is the goal of an ongoing project AIAQUAMI we are participating in. One of the project deliverables is a standalone desktop application for image classification with visualization and reporting that we developed and open-sourced as Imagelytics. The application relies on a convolutional neural network (CNN) to classify images and the Grad-CAM algorithm to produce heatmaps of the image areas that mostly influenced the network decision. Along with the application code, we also open-sourced scripts that can be used to train CNN on an arbitrary dataset and produce required metadata, so it can be used with Imagelytics. In this paper, we presented technical details about the application and training method that will enable its general use for image classification tasks. As a part of the evaluation, we will show a use case related to species identification of non-biting midges (Diptera: Chironomidae).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Manoylov, K.M.: Taxonomic identification of algae (morphological and molecular): species concepts, methodologies, and their implications for ecological bioassessment. J. Phycol. 50, 409–424 (2014). https://doi.org/10.1111/JPY.12183

    Article  Google Scholar 

  2. Meyer, A., et al.: Morphological vs. DNA metabarcoding approaches for the evaluation of stream ecological status with benthic invertebrates: testing different combinations of markers and strategies of data filtering. Mol Ecol. 30, 3203–3220 (2021). https://doi.org/10.1111/MEC.15723

  3. Milošević, D., et al.: Application of deep learning in aquatic bioassessment: towards automated identification of non-biting midges. Sci. Total Environ. 711, 135160 (2020). https://doi.org/10.1016/j.scitotenv.2019.135160

    Article  Google Scholar 

  4. Knausgård, K.M., et al.: Temperate fish detection and classification: a deep learning based approach. Appl. Intell. 52, 6988–7001 (2022). https://doi.org/10.1007/S10489-020-02154-9/FIGURES/15

    Article  Google Scholar 

  5. Milosavljević, A., Milošević, Đ., Predić, B.: Species identification for aquatic biomonitoring using deep residual CNN and transfer learning. facta universitatis, Series: Autom. Control Robot. 20, 001–019 (2021). https://doi.org/10.22190/FUACR201118001M

  6. Imagelytics: A standalone desktop application for image classification with visualization and reporting, https://github.com/a-milosavljevic/imagelytics. Accessed 11 Mar 2023

  7. Đurđević, A., et al.: Mandibular shape as a proxy for the identification of functional feeding traits of midge larvae (Diptera: Chironomidae). Ecol Indic. 147, 109908 (2023). https://doi.org/10.1016/J.ECOLIND.2023.109908

    Article  Google Scholar 

  8. TensorFlow: An end-to-end open source machine learning platform. https://www.tensorflow.org/. Accessed 24 Jan 2020

  9. Keras: The Python Deep Learning library. https://keras.io. Accessed 24 Jan 2020

  10. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-CAM: visual explanations from deep networks via gradient-based localization. In: International Journal of Computer Vision (ICCV), pp. 618–626 (2017)

    Google Scholar 

  11. Python UI | Design GUI with Python | Python Bindings for Qt, https://www.qt.io/qt-for-python. Accessed 17 Mar 2023

  12. PyInstaller. https://pyinstaller.org/. Accessed 11 Mar 2023

  13. Inno Setup. https://jrsoftware.org/isinfo.php. Accessed 11 Mar 2023

  14. Csurka, G., Dance, C.R., Fan, L., Willamowski, J., Bray, C.: Visual categorization with bags of keypoints. In: Workshop on Statistical Learning in Computer Vision, ECCV (2004)

    Google Scholar 

  15. Haralick, R.M., Shanmugam, K., Dinstein, I.: Textural features for image classification. IEEE Trans. Syst. Man Cybern. SMC-3, 610–621 (1973). https://doi.org/10.1109/TSMC.1973.4309314

  16. Weeks, P.J.D., O’Neill, M.A., Gaston, K.J., Gauld, I.D.: Species-identification of wasps using principal component associative memories. Image Vis Comput. 17, 861–866 (1999). https://doi.org/10.1016/S0262-8856(98)00161-9

    Article  Google Scholar 

  17. Jose, J.A., Kumar, C.S.: Genus and species-level classification of wrasse fishes using multidomain features and extreme learning machine classifier. Intern J Pattern Recognit Artif Intell. (2020). https://doi.org/10.1142/S0218001420500287

    Article  Google Scholar 

  18. Kanellopoulos, I., Wilkinson, G.G.: Strategies and best practice for neural network image classification. Int. J. Remote Sens. 18, 711–725 (1997). https://doi.org/10.1080/014311697218719

    Article  Google Scholar 

  19. LeCun, Y., et al.: Handwritten digit recognition with a back-propagation network. papers.nips.cc., pp. 396–404 (1990)

    Google Scholar 

  20. LeCun, Y., Bengio, Y.: Convolutional Networks for Images, Speech, and Time Series. The handbook of brain theory and neural networks, 3361. MIT Press, Cambridge (1995)

    Google Scholar 

  21. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  22. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vision 115(3), 211–252 (2015). https://doi.org/10.1007/s11263-015-0816-y

    Article  MathSciNet  Google Scholar 

  23. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90

  24. Tan, M., Le, Q.V: EfficientNet: rethinking model scaling for convolutional neural networks. In: Proceedings of the 36th International Conference on Machine Learning, pp. 6105–6114. PMLR (2019)

    Google Scholar 

  25. Shao, L., Zhu, F., Li, X.: Transfer learning for visual categorization: A survey. IEEE Trans. Neural Netw. Learn Syst. 26, 1019–1034 (2015). https://doi.org/10.1109/TNNLS.2014.2330900

    Article  MathSciNet  Google Scholar 

  26. Yosinski, J., Clune, J., Bengio, Y., Lipson, H.: How transferable are features in deep neural networks? In: Advances in Neural Information Processing Systems, pp. 3320–3328 (2014)

    Google Scholar 

  27. Affonso, C., Rossi, A.L.D., Vieira, F.H.A., de Carvalho, A.C.P. de L.F.: Deep learning for biological image classification. Expert Syst Appl. 85, 114–122 (2017). https://doi.org/10.1016/j.eswa.2017.05.039

  28. Hermessi, H., Mourali, O., Zagrouba, E.: Deep feature learning for soft tissue sarcoma classification in MR images via transfer learning. Expert Syst. Appl. 120, 116–127 (2019). https://doi.org/10.1016/j.eswa.2018.11.025

    Article  Google Scholar 

  29. Ting, F.F., Tan, Y.J., Sim, K.S.: Convolutional neural network improvement for breast cancer classification. Expert Syst.s Appl. 120, 103–115 (2019). https://doi.org/10.1016/j.eswa.2018.11.008

    Article  Google Scholar 

  30. Jiang, M., Cheng, L., Qin, F., Du, L., Zhang, M.: White blood cells classification with deep convolutional neural networks. Int. J. Pattern Recogn. Artif. Intell. 32 (2018). https://doi.org/10.1142/S0218001418570069

  31. Liu, S., Shih, F.Y., Russell, G., Russell, K., Phan, H.: Classification of ecological data by deep learning. Int. J. Pattern Recogn. Artif. Intell. (2020). https://doi.org/10.1142/S0218001420520102

  32. Wäldchen, J., Mäder, P.: Machine learning for image based species identification. Methods Ecol Evol. 9, 2216–2225 (2018). https://doi.org/10.1111/2041-210X.13075

    Article  MATH  Google Scholar 

  33. Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arxiv.org (2012)

    Google Scholar 

Download references

Acknowledgment

This research was supported by the Science Fund of the Republic of Serbia, #7751676, Application of deep learning in bioassessment of aquatic ecosystems: toward the construction of automatic identifier of aquatic macroinvertebrates - AIAQUAMI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksandar Milosavljević .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Milosavljević, A., Predić, B., Milošević, D. (2023). Imagelytics: A Deep Learning-Based Image Classification Tool to Support Bioassessment. In: Jove, E., Zayas-Gato, F., Michelena, Á., Calvo-Rolle, J.L. (eds) Distributed Computing and Artificial Intelligence, Special Sessions II - Intelligent Systems Applications, 20th International Conference. DCAI 2023. Lecture Notes in Networks and Systems, vol 742. Springer, Cham. https://doi.org/10.1007/978-3-031-38616-9_5

Download citation

Publish with us

Policies and ethics