Skip to main content

Network-Agnostic Security Comes (Almost) for Free in DKG and MPC

  • Conference paper
  • First Online:
Advances in Cryptology – CRYPTO 2023 (CRYPTO 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14081))

Included in the following conference series:

Abstract

Distributed key generation (DKG) protocols are an essential building block for threshold cryptosystems. Many DKG protocols tolerate up to \(t_s<n/2\) corruptions assuming a well-behaved synchronous network, but become insecure as soon as the network delay becomes unstable. On the other hand, solutions in the asynchronous model operate under arbitrary network conditions, but only tolerate \(t_a<n/3\) corruptions, even when the network is well-behaved.

In this work, we ask whether one can design a protocol that achieves security guarantees in either scenario. We show a complete characterization of network-agnostic DKG protocols, showing that the tight bound is \(t_a+2t_s <n\). As a second contribution, we provide an optimized version of the network-agnostic multi-party computation (MPC) protocol by Blum, Liu-Zhang and Loss [CRYPTO’20] which improves over the communication complexity of their protocol by a linear factor. Moreover, using our DKG protocol, we can instantiate our MPC protocol in the plain PKI model, i.e., without the need to assume an expensive trusted setup.

Our protocols incur comparable communication complexity as state-of-the-art DKG and MPC protocols with optimal resilience in their respective purely synchronous and asynchronous settings, thereby showing that network-agnostic security comes (almost) for free.

R. Bacho—The author was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) - 507237585.

D. Collins—This work was partially carried out while the author was visiting CISPA.

C.-D. Liu-Zhang—CMU and NTT Research and supported by the NSF award 1916939, DARPA SIEVE program, a gift from Ripple, a DoE NETL award, a JP Morgan Faculty Fellowship, a PNC center for financial services innovation award, and a Cylab seed funding award.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In this model, the public keys of corrupted parties can be generated arbitrarily.

  2. 2.

    Note that a possibly biased secret can still be sufficient for applications like threshold signatures, as highlighted in [GJKR07, BL22].

  3. 3.

    This discussion omits a minor technical detail: the adversary must not be able to broadcast incorrect messages on behalf of honest parties, even in asynchrony. Ensuring this, however, is easy using digital signatures.

  4. 4.

    The simplified description tolerates only fail-stop corruptions. To achieve security against active adversaries, one needs NIZKs at appropriate steps of the protocol. See Sect. 6 for details.

  5. 5.

    We emphasise that t-security does not imply t-intrusion tolerance.

  6. 6.

    For rounds \(r\ge t+1\) we only require \(t+1\) signatures including the sender’s.

  7. 7.

    We conjecture that the protocol without these extra messages also satisfies consistency, but the protocol as written has the same asymptotic complexity and therefore we leave it as future work to prove it.

References

  1. Alexandru, A.B., Blum, E., Katz, J., Loss, J.: State machine replication under changing network conditions. In: Agrawal, S., Lin, D. (eds.) ASIACRYPT 2022. LNCS, vol. 13791, pp. 681–710. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-22963-3_23

    Chapter  Google Scholar 

  2. Alexandru, A.B., Blum, E., Katz, J., Loss, J.: State machine replication under changing network conditions. Cryptology ePrint Archive, Paper 2022/698 (2022). https://eprint.iacr.org/2022/698

  3. Appan, A., Choudhury, A.: Network agnostic MPC with statistical security. Cryptology ePrint Archive, Paper 2023/820 (2023). https://eprint.iacr.org/2023/820

  4. Appan, A., Chandramouli, A., Choudhury, A.: Perfectly-secure synchronous MPC with asynchronous fallback guarantees. In: Proceedings of the 2022 ACM Symposium on Principles of Distributed Computing, PODC 2022, pp. 92–102. Association for Computing Machinery, New York (2022)

    Google Scholar 

  5. Appan, A., Chandramouli, A., Choudhury, A.: Perfectly secure synchronous MPC with asynchronous fallback guarantees against general adversaries. Cryptology ePrint Archive, Paper 2022/1047 (2022). https://eprint.iacr.org/2022/1047

  6. Abraham, I., et al.: Communication complexity of byzantine agreement, revisited. In: Robinson, P., Ellen, F. (eds.) 38th ACM PODC, pp. 317–326. ACM, July/August 2019

    Google Scholar 

  7. Abraham, I., Jovanovic, P., Maller, M., Meiklejohn, S., Stern, G., Tomescu, A.: Reaching consensus for asynchronous distributed key generation. In: Proceedings of the 2021 ACM Symposium on Principles of Distributed Computing, pp. 363–373 (2021)

    Google Scholar 

  8. Abraham, I., Jovanovic, P., Maller, M., Meiklejohn, S., Stern, G.: Bingo: adaptively secure packed asynchronous verifiable secret sharing and asynchronous distributed key generation. Cryptology ePrint Archive, Paper 2022/1759 (2022). https://eprint.iacr.org/2022/1759

  9. Ben-Or, M., Canetti, R., Goldreich, O.: Asynchronous secure computation. In: 25th ACM STOC, pp. 52–61. ACM Press, May 1993

    Google Scholar 

  10. Bacho, R., Collins, D., Liu-Zhang, C.-D., Loss, J.: Network-agnostic security comes (almost) for free in DKG and MPC. Cryptology ePrint Archive, Paper 2022/1369 (2022). https://eprint.iacr.org/2022/1369

  11. Beaver, D.: Efficient multiparty protocols using circuit randomization. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 420–432. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1_34

    Chapter  Google Scholar 

  12. Ben-Sasson, E., Fehr, S., Ostrovsky, R.: Near-linear unconditionally-secure multiparty computation with a dishonest minority. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 663–680. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_39

    Chapter  Google Scholar 

  13. Blum, E., Katz, J., Loss, J.: Synchronous consensus with optimal asynchronous fallback guarantees. In: Hofheinz, D., Rosen, A. (eds.) TCC 2019, Part I. LNCS, vol. 11891, pp. 131–150. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36030-6_6

  14. Blum, E., Katz, J., Loss, J.: Tardigrade: an atomic broadcast protocol for arbitrary network conditions. In: Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021, Part II. LNCS, vol. 13091, pp. 547–572. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92075-3_19

    Chapter  Google Scholar 

  15. Ben-Or, M., Kelmer, B., Rabin, T.: Asynchronous secure computations with optimal resilience (extended abstract). In: Anderson, J., Toueg, S. (eds.) 13th ACM PODC, pp. 183–192. ACM, August 1994

    Google Scholar 

  16. Bacho, R., Loss, J.: On the adaptive security of the threshold BLS signature scheme. In: Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security, CCS 2022, pp. 193–207. Association for Computing Machinery, New York (2022)

    Google Scholar 

  17. Blum, E., Liu-Zhang, C.-D., Loss, J.: Always have a backup plan: fully secure synchronous MPC with asynchronous fallback. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020, Part II. LNCS, vol. 12171, pp. 707–731. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56880-1_25

    Chapter  Google Scholar 

  18. Barić, N., Pfitzmann, B.: Collision-free accumulators and fail-stop signature schemes without trees. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 480–494. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-69053-0_33

    Chapter  Google Scholar 

  19. Beerliová-Trubíniová, Z., Hirt, M.: Perfectly-secure MPC with linear communication complexity. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 213–230. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78524-8_13

    Chapter  Google Scholar 

  20. Cramer, R., Damgård, I., Nielsen, J.B.: Multiparty computation from threshold homomorphic encryption. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 280–300. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44987-6_18

    Chapter  Google Scholar 

  21. Catalano, D., Fiore, D.: Vector commitments and their applications. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 55–72. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36362-7_5

    Chapter  Google Scholar 

  22. Canetti, R., Gennaro, R., Goldfeder, S., Makriyannis, N., Peled, U.: UC non-interactive, proactive, threshold ECDSA with identifiable aborts. In: Ligatti, J., Ou, X., Katz, J., Vigna, G. (eds.) ACM CCS 2020, pp. 1769–1787. ACM Press, November 2020

    Google Scholar 

  23. Canetti, R., Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Adaptive security for threshold cryptosystems. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 98–116. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1_7

    Chapter  Google Scholar 

  24. Chor, B., Goldwasser, S., Micali, S., Awerbuch, B.: Verifiable secret sharing and achieving simultaneity in the presence of faults. In: 26th Annual Symposium on Foundations of Computer Science (SFCS 1985), pp. 383–395. IEEE (1985)

    Google Scholar 

  25. Chopard, A., Hirt, M., Liu-Zhang, C.-D.: On communication-efficient asynchronous MPC with adaptive security. In: Nissim, K., Waters, B. (eds.) TCC 2021, Part II. LNCS, vol. 13043, pp. 35–65. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-90453-1_2

    Chapter  Google Scholar 

  26. Choudhury, A.: Optimally-resilient unconditionally-secure asynchronous multi-party computation revisited. Cryptology ePrint Archive, Report 2020/906 (2020). https://eprint.iacr.org/2020/906

  27. Choudhury, A., Hirt, M., Patra, A.: Asynchronous multiparty computation with linear communication complexity. In: Afek, Y. (ed.) DISC 2013. LNCS, vol. 8205, pp. 388–402. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41527-2_27

    Chapter  Google Scholar 

  28. Cachin, C., Kursawe, K., Petzold, F., Shoup, V.: Secure and efficient asynchronous broadcast protocols. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 524–541. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8_31

    Chapter  Google Scholar 

  29. Cohen, R., Lindell, Y.: Fairness versus guaranteed output delivery in secure multiparty computation. J. Cryptol. 30(4), 1157–1186 (2017). https://doi.org/10.1007/s00145-016-9245-5

    Article  MathSciNet  MATH  Google Scholar 

  30. Cohen, R.: Asynchronous secure multiparty computation in constant time. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.) PKC 2016, Part II. LNCS, vol. 9615, pp. 183–207. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49387-8_8

    Chapter  Google Scholar 

  31. Choudhury, A., Patra, A.: Optimally resilient asynchronous MPC with linear communication complexity. In: Proceedings of the 2015 International Conference on Distributed Computing and Networking, ICDCN 2015. Association for Computing Machinery, New York (2015)

    Google Scholar 

  32. Chan, T.-H.H., Pass, R., Shi, E.: Sublinear-round byzantine agreement under corrupt majority. In: Kiayias, A., Kohlweiss, M., Wallden, P., Zikas, V. (eds.) PKC 2020, Part II. LNCS, vol. 12111, pp. 246–265. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45388-6_9

    Chapter  Google Scholar 

  33. Deligios, G., Hirt, M., Liu-Zhang, C.-D.: Round-efficient byzantine agreement and multi-party computation with asynchronous fallback. In: Nissim, K., Waters, B. (eds.) TCC 2021, Part I. LNCS, vol. 13042, pp. 623–653. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-90459-3_21

    Chapter  Google Scholar 

  34. Damgård, I., Ishai, Y.: Scalable secure multiparty computation. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 501–520. Springer, Heidelberg (2006). https://doi.org/10.1007/11818175_30

    Chapter  Google Scholar 

  35. Deligios, G., Liu-Zhang, C.-D.: Synchronous perfectly secure message transmission with optimal asynchronous fallback guarantees. Financial Cryptography and Data Security (2023)

    Google Scholar 

  36. Dolev, D., Strong, H.R.: Authenticated algorithms for byzantine agreement. SIAM J. Comput. 12(4), 656–666 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  37. Das, S., Xiang, Z., Ren, L.: Powers of tau in asynchrony. Cryptology ePrint Archive, Paper 2022/1683 (2022). https://eprint.iacr.org/2022/1683

  38. Das, S., Yurek, T., Xiang, Z., Miller, A., Kokoris-Kogias, L., Ren, L.: Practical asynchronous distributed key generation. In: 2022 IEEE Symposium on Security and Privacy (SP), pp. 2518–2534 (2022)

    Google Scholar 

  39. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms. In: Blakley, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 10–18. Springer, Heidelberg (1985). https://doi.org/10.1007/3-540-39568-7_2

    Chapter  Google Scholar 

  40. Feldman, P.: A practical scheme for non-interactive verifiable secret sharing. In: 28th Annual Symposium on Foundations of Computer Science (SFCS 1987), pp. 427–438. IEEE (1987)

    Google Scholar 

  41. Fitzi, M., Gottesman, D., Hirt, M., Holenstein, T., Smith, A.: Detectable byzantine agreement secure against faulty majorities. In: Ricciardi, A. (ed.) 21st ACM PODC, pp. 118–126. ACM, July 2002

    Google Scholar 

  42. Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Secure distributed key generation for discrete-log based cryptosystems. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 295–310. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X_21

    Chapter  Google Scholar 

  43. Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Secure distributed key generation for discrete-log based cryptosystems. J. Cryptol. 20(1), 51–83 (2007). https://doi.org/10.1007/s00145-006-0347-3

    Article  MathSciNet  MATH  Google Scholar 

  44. Gurkan, K., Jovanovic, P., Maller, M., Meiklejohn, S., Stern, G., Tomescu, A.: Aggregatable distributed key generation. In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021. LNCS, vol. 12696, pp. 147–176. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77870-5_6

    Chapter  Google Scholar 

  45. Gao, Y., Lu, Y., Lu, Z., Tang, Q., Xu, J., Zhang, Z.: Efficient asynchronous byzantine agreement without private setups. arXiv preprint arXiv:2106.07831 (2021)

  46. Gao, Y., Lu, Y., Lu, Z., Tang, Q., Xu, J., Zhang, Z.: Efficient asynchronous byzantine agreement without private setups. In: 42nd IEEE International Conference on Distributed Computing Systems, ICDCS 2022, Bologna, Italy, 10–13 July 2022, pp. 246–257. IEEE (2022)

    Google Scholar 

  47. Goyal, V., Liu, Y., Song, Y.: Communication-efficient unconditional MPC with guaranteed output delivery. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part II. LNCS, vol. 11693, pp. 85–114. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26951-7_4

    Chapter  Google Scholar 

  48. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a completeness theorem for protocols with honest majority. In: Aho, A. (ed.) 19th ACM STOC, pp. 218–229. ACM Press, May 1987

    Google Scholar 

  49. Groth, J., Ostrovsky, R.: Cryptography in the multi-string model. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 323–341. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74143-5_18

    Chapter  MATH  Google Scholar 

  50. Groth, J.: Simulation-sound NIZK proofs for a practical language and constant size group signatures. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284, pp. 444–459. Springer, Heidelberg (2006). https://doi.org/10.1007/11935230_29

    Chapter  Google Scholar 

  51. Goyal, V., Song, Y., Zhu, C.: Guaranteed Output Delivery Comes Free in Honest Majority MPC. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020, Part II. LNCS, vol. 12171, pp. 618–646. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56880-1_22

    Chapter  Google Scholar 

  52. Hirt, M., Nielsen, J.B.: Robust multiparty computation with linear communication complexity. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 463–482. Springer, Heidelberg (2006). https://doi.org/10.1007/11818175_28

    Chapter  Google Scholar 

  53. Hirt, M., Nielsen, J.B., Przydatek, B.: Cryptographic asynchronous multi-party computation with optimal resilience. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 322–340. Springer, Heidelberg (2005). https://doi.org/10.1007/11426639_19

    Chapter  Google Scholar 

  54. Hirt, M., Nielsen, J.B., Przydatek, B.: Asynchronous multi-party computation with quadratic communication. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 473–485. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70583-3_39

    Chapter  Google Scholar 

  55. Ishai, Y., Ostrovsky, R., Zikas, V.: Secure multi-party computation with identifiable abort. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part II. LNCS, vol. 8617, pp. 369–386. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44381-1_21

    Chapter  Google Scholar 

  56. Kate, A., Goldberg, I.: Distributed key generation for the internet. In: 2009 29th IEEE International Conference on Distributed Computing Systems, pp. 119–128. IEEE (2009)

    Google Scholar 

  57. Lipmaa, H.: Secure accumulators from euclidean rings without trusted setup. In: Bao, F., Samarati, P., Zhou, J. (eds.) ACNS 2012. LNCS, vol. 7341, pp. 224–240. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31284-7_14

    Chapter  Google Scholar 

  58. Mostéfaoui, A., Raynal, M.: Signature-free broadcast-based intrusion tolerance: never decide a byzantine value. In: Lu, C., Masuzawa, T., Mosbah, M. (eds.) OPODIS 2010. LNCS, vol. 6490, pp. 143–158. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17653-1_13

    Chapter  Google Scholar 

  59. Mostéfaoui, A., Raynal, M.: Signature-free asynchronous byzantine systems: from multivalued to binary consensus with \(t < n/3\), \({O}(n^2)\) messages, and constant time. Acta Informatica 54(5), 501–520 (2017). https://doi.org/10.1007/s00236-016-0269-y

    Article  MathSciNet  MATH  Google Scholar 

  60. Momose, A., Ren, L.: Multi-threshold byzantine fault tolerance. In: Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security, pp. 1686–1699 (2021)

    Google Scholar 

  61. Momose, A., Ren, L.: Optimal communication complexity of authenticated byzantine agreement. In: Gilbert, S. (ed.) 35th International Symposium on Distributed Computing (DISC 2021), Volume 209 of Leibniz International Proceedings in Informatics (LIPIcs), Dagstuhl, Germany, pp. 32:1–32:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021)

    Google Scholar 

  62. Nayak, K., Ren, L., Shi, E., Vaidya, N.H., Xiang, Z.: Improved extension protocols for byzantine broadcast and agreement. In: Attiya, H. (ed.) 34th International Symposium on Distributed Computing (DISC 2020), Volume 179 of Leibniz International Proceedings in Informatics (LIPIcs), Dagstuhl, Germany, pp. 28:1–28:17. Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2020)

    Google Scholar 

  63. Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X_16

    Chapter  Google Scholar 

  64. Patra, A., Choudhury, A., Rangan,C.P.: Efficient asynchronous multiparty computation with optimal resilience. Cryptology ePrint Archive, Report 2008/425 (2008). https://eprint.iacr.org/2008/425

  65. Patra, A., Choudhary, A., Rangan, C.P.: Efficient statistical asynchronous verifiable secret sharing with optimal resilience. In: Kurosawa, K. (ed.) ICITS 2009. LNCS, vol. 5973, pp. 74–92. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14496-7_7

    Chapter  Google Scholar 

  66. Patra, A., Choudhury, A., Pandu Rangan, C.: Efficient asynchronous verifiable secret sharing and multiparty computation. J. Cryptol. 28(1), 49–109 (2013). https://doi.org/10.1007/s00145-013-9172-7

    Article  MathSciNet  MATH  Google Scholar 

  67. Pedersen, T.P.: A threshold cryptosystem without a trusted party. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 522–526. Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-46416-6_47

    Chapter  Google Scholar 

  68. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1_9

    Chapter  Google Scholar 

  69. Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: nearly practical verifiable computation. In: 2013 IEEE Symposium on Security and Privacy, pp. 238–252. IEEE Computer Society Press, May 2013

    Google Scholar 

  70. Prabhu, B., Srinathan, K., Rangan, C.P.: Asynchronous unconditionally secure computation: an efficiency improvement. In: Menezes, A., Sarkar, P. (eds.) INDOCRYPT 2002. LNCS, vol. 2551, pp. 93–107. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-36231-2_9

    Chapter  Google Scholar 

  71. Reed, I.S., Solomon, G.: Polynomial codes over certain finite fields. J. Soc. Ind. Appl. Math. 8(2), 300–304 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  72. Shrestha, N., Bhat, A., Kate, A., Nayak, K.: Synchronous distributed key generation without broadcasts. Cryptology ePrint Archive, Paper 2021/1635 (2021). https://eprint.iacr.org/2021/1635

  73. Srinathan, K., Pandu Rangan, C.: Efficient asynchronous secure multiparty distributed computation. In: Roy, B., Okamoto, E. (eds.) INDOCRYPT 2000. LNCS, vol. 1977, pp. 117–129. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44495-5_11

    Chapter  Google Scholar 

  74. Stadler, M.: Publicly verifiable secret sharing. In: Maurer, U. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 190–199. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68339-9_17

    Chapter  Google Scholar 

  75. Tsimos, G., Loss, J., Papamanthou, C.: Gossiping for communication-efficient broadcast. In: Dodis, Y., Shrimpton, T. (eds.) CRYPTO 2022. LNCS, vol. 13509, pp. 439–469. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-15982-4_15

    Chapter  Google Scholar 

  76. Zhang, H., et al.: Practical asynchronous distributed key generation: improved efficiency, weaker assumption, and standard model. Cryptology ePrint Archive, Paper 2022/1678 (2022). https://eprint.iacr.org/2022/1678

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Collins .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bacho, R., Collins, D., Liu-Zhang, CD., Loss, J. (2023). Network-Agnostic Security Comes (Almost) for Free in DKG and MPC. In: Handschuh, H., Lysyanskaya, A. (eds) Advances in Cryptology – CRYPTO 2023. CRYPTO 2023. Lecture Notes in Computer Science, vol 14081. Springer, Cham. https://doi.org/10.1007/978-3-031-38557-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-38557-5_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-38556-8

  • Online ISBN: 978-3-031-38557-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics