Skip to main content

Learning with Physical Rounding for Linear and Quadratic Leakage Functions

  • Conference paper
  • First Online:
Advances in Cryptology – CRYPTO 2023 (CRYPTO 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14083))

Included in the following conference series:

Abstract

Fresh re-keying is a countermeasure against side-channel analysis where an ephemeral key is derived from a long-term key using a public random value. Popular instances of such schemes rely on key-homomorphic primitives, so that the re-keying process is easy to mask and the rest of the (e.g., block cipher) computations can run with cheaper countermeasures. The main requirement for these schemes to be secure is that the leakages of the ephemeral keys do not allow recovering the long-term key. The Learning with Physical Rounding (LWPR) problem formalizes this security in a practically-relevant model where the adversary can observe noise-free leakages. It can be viewed as a physical version of the Learning With Rounding (LWR) problem, where the rounding is performed by a leakage function and therefore does not have to be computed explicitly. In this paper, we first consolidate the intuition that LWPR cannot be secure in a serial implementation context without additional countermeasures (like shuffling), due to attacks exploiting worst-case leakages that can be mounted with practical data complexity. We then extend the understanding of LWPR in a parallel implementation setting. On the one hand, we generalize its robustness against cryptanalysis taking advantage of any (i.e., not only worst-case) leakage. A previous work claimed security in the specific context of a Hamming weight leakage function. We clarify necessary conditions to maintain this guarantee, based on the degree of the leakage function and the accuracy of its coefficients. On the other hand, we show that parallelism inherently provides good security against attacks exploiting worst-case leakages. We finally confirm the practical relevance of these findings by validating our assumptions experimentally for an exemplary implementation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://csrc.nist.gov/Projects/post-quantum-cryptography.

  2. 2.

    Or \(n_b=t+1\), with a constant term to capture DC effects in the measurements.

  3. 3.

    Increasing the size of p could provide similar security benefits at higher cost.

  4. 4.

    The first attack path (leveraging the leakages of the shared multiplications) was analyzed in [DMMS21] and the arguments of this previous work apply similarly.

  5. 5.

    With a relative error of below 1%, which is easy to reach since the estimation is performed from modeled samples (rather than measured ones in Sect. 6.2).

References

  1. Belaïd, S., Coron, J.-S., Fouque, P.-A., Gérard, B., Kammerer, J.-G., Prouff, E.: Improved side-channel analysis of finite-field multiplication. In: Güneysu, T., Handschuh, H. (eds.) CHES 2015. LNCS, vol. 9293, pp. 395–415. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48324-4_20

    Chapter  Google Scholar 

  2. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28632-5_2

    Chapter  Google Scholar 

  3. Barthe, G., Dupressoir, F., Faust, S., Grégoire, B., Standaert, F.-X., Strub, P.-Y.: Parallel implementations of masking schemes and the bounded moment leakage model. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10210, pp. 535–566. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56620-7_19

    Chapter  Google Scholar 

  4. Bos, J.W., et al.: CRYSTALS - Kyber: a CCA-secure module-lattice-based KEM. In: EuroS &P, pp. 353–367. IEEE (2018)

    Google Scholar 

  5. Belaïd, S., Fouque, P.-A., Gérard, B.: Side-channel analysis of multiplications in GF(2128). In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8874, pp. 306–325. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45608-8_17

    Chapter  MATH  Google Scholar 

  6. Bardet, M., Faugère, J.-C., Salvy, B.: On the complexity of the F5 gröbner basis algorithm. J. Symb. Comput. 70, 49–70 (2015)

    Article  MATH  Google Scholar 

  7. Brenner, H., Gaspar, L., Leurent, G., Rosen, A., Standaert, F.-X.: FPGA implementations of SPRING. In: Batina, L., Robshaw, M. (eds.) CHES 2014. LNCS, vol. 8731, pp. 414–432. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44709-3_23

    Chapter  MATH  Google Scholar 

  8. Boneh, D., Ishai, Y., Passelègue, A., Sahai, A., Wu, D.J.: Exploring crypto dark matter: new simple PRF candidates and their applications. In: Beimel, A., Dziembowski, S. (eds.) TCC 2018. LNCS, vol. 11240, pp. 699–729. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03810-6_25

    Chapter  Google Scholar 

  9. Banerjee, A., Peikert, C., Rosen, A.: Pseudorandom functions and lattices. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 719–737. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_42

    Chapter  Google Scholar 

  10. Bellizia, D., Udvarhelyi, B., Standaert, F.-X.: Towards a better understanding of side-channel analysis measurements setups. In: Grosso, V., Pöppelmann, T. (eds.) CARDIS. LNCS, vol. 13173, pp. 64–79. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-97348-3_4

  11. Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from ring-LWE and security for key dependent messages. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 505–524. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9_29

    Chapter  Google Scholar 

  12. Carlet, C.: Boolean Functions for Cryptography and Coding Theory. Cambridge University Press (2021)

    Google Scholar 

  13. Coron, J.-S., Giraud, C., Prouff, E., Renner, S., Rivain, M., Vadnala, P.K.: Conversion of security proofs from one leakage model to another: a new issue. In: Schindler, W., Huss, S.A. (eds.) COSADE 2012. LNCS, vol. 7275, pp. 69–81. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29912-4_6

    Chapter  Google Scholar 

  14. Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate a lattice basis. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 523–552. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_27

    Chapter  Google Scholar 

  15. Cosseron, O., Hoffmann, C., Méaux, P., Standaert, F.-X.: Towards case-optimized hybrid homomorphic encryption - featuring the Elisabeth stream cipher. In: Agrawal, S., Lin, D. (eds.) ASIACRYPT (3). LNCS, vol. 13793, pp. 32–67. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-22969-5_2

  16. Courtois, N.T.: Higher order correlation attacks, XL algorithm and cryptanalysis of Toyocrypt. In: Lee, P.J., Lim, C.H. (eds.) Information Security and Cryptology - ICISC 2002, 5th International Conference Seoul, Korea, 28–29 November 2002, Revised Papers. LNCS, vol. 2587, pp. 182–199. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-36552-4_13

  17. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski, B.S., Koç, K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36400-5_3

    Chapter  Google Scholar 

  18. Cassiers, G., Standaert, F.-X.: Trivially and efficiently composing masked gadgets with probe isolating non-interference. IEEE Trans. Inf. Forensics Secur. 15, 2542–2555 (2020)

    Article  Google Scholar 

  19. Cassiers, G., Standaert, F.-X.: Provably secure hardware masking in the transition- and glitch-robust probing model: better safe than sorry. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2021(2), 136–158 (2021)

    Article  Google Scholar 

  20. Dziembowski, S., Faust, S., Herold, G., Journault, A., Masny, D., Standaert, F.-X.: Towards sound fresh re-keying with hard (physical) learning problems. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 272–301. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53008-5_10

    Chapter  Google Scholar 

  21. Dinur, I., et al.: MPC-friendly symmetric cryptography from alternating moduli: candidates, protocols, and applications. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS, vol. 12828, pp. 517–547. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84259-8_18

    Chapter  Google Scholar 

  22. Ducas, L., et al.: Crystals-Dilithium: a lattice-based digital signature scheme. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2018(1), 238–268 (2018)

    Article  MathSciNet  Google Scholar 

  23. Duval, S., Méaux, P., Momin, C., Standaert, F.-X.: Exploring crypto-physical dark matter and learning with physical rounding towards secure and efficient fresh re-keying. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2021(1), 373–401 (2021)

    Google Scholar 

  24. Faugère, J.-C.: A new efficient algorithm for computing Groebner bases. J. Pure Appl. Algebra, 61–88 (1999)

    Google Scholar 

  25. Faugère, J.C.: A new efficient algorithm for computing Gröbner bases without reduction to zero (F5). In: Proceedings of the 2002 International Symposium on Symbolic and Algebraic Computation, ISSAC 2002, pp. 75–83 (2002)

    Google Scholar 

  26. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC, pp. 169–178. ACM (2009)

    Google Scholar 

  27. Guo, Q., Johansson, T.: A new birthday-type algorithm for attacking the fresh re-keying countermeasure. Inf. Process. Lett. 146, 30–34 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  28. Gierlichs, B., Lemke-Rust, K., Paar, C.: Templates vs. stochastic methods. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 15–29. Springer, Heidelberg (2006). https://doi.org/10.1007/11894063_2

    Chapter  Google Scholar 

  29. Gaspar, L., Leurent, G., Standaert, F.-X.: Hardware implementation and side-channel analysis of lapin. In: Benaloh, J. (ed.) CT-RSA 2014. LNCS, vol. 8366, pp. 206–226. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-04852-9_11

    Chapter  Google Scholar 

  30. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: STOC, pp. 197–206. ACM (2008)

    Google Scholar 

  31. Goudarzi, D., Rivain, M.: How fast can higher-order masking be in software? In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10210, pp. 567–597. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56620-7_20

    Chapter  MATH  Google Scholar 

  32. Hopper, N.J., Blum, M.: Secure human identification protocols. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 52–66. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45682-1_4

    Chapter  Google Scholar 

  33. Heyse, S., Kiltz, E., Lyubashevsky, V., Paar, C., Pietrzak, K.: Lapin: an efficient authentication protocol based on ring-LPN. In: Canteaut, A. (ed.) FSE 2012. LNCS, vol. 7549, pp. 346–365. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34047-5_20

    Chapter  Google Scholar 

  34. Hoffmann, C., Libert, B., Momin, C., Peters, T., Standaert, F.-X.: POLKA: towards leakage-resistant post-quantum CCA-secure public key encryption. In: Boldyreva, A., Kolesnikov, V. (eds.) Public Key Cryptography (1). LNCS, vol. 13940, pp. 114–144. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-31368-4_5

  35. Herbst, C., Oswald, E., Mangard, S.: An AES smart card implementation resistant to power analysis attacks. In: Zhou, J., Yung, M., Bao, F. (eds.) ACNS 2006. LNCS, vol. 3989, pp. 239–252. Springer, Heidelberg (2006). https://doi.org/10.1007/11767480_16

    Chapter  Google Scholar 

  36. Hou, X.-D.: Lectures on Finite Fields, vol. 190. American Mathematical Society (2018)

    Google Scholar 

  37. Ishai, Y., Sahai, A., Wagner, D.: Private circuits: securing hardware against probing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4_27

    Chapter  Google Scholar 

  38. Koppermann, P., De Santis, F., Heyszl, J., Sigl, G.: Automatic generation of high-performance modular multipliers for arbitrary Mersenne primes on FPGAs. In: HOST, pp. 35–40. IEEE Computer Society (2017)

    Google Scholar 

  39. Mangard, S.: Hardware countermeasures against DPA – a statistical analysis of their effectiveness. In: Okamoto, T. (ed.) CT-RSA 2004. LNCS, vol. 2964, pp. 222–235. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24660-2_18

    Chapter  Google Scholar 

  40. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks - Revealing the Secrets of Smart Cards. Springer, New York (2007). https://doi.org/10.1007/978-0-387-38162-6

  41. Mangard, S., Popp, T., Gammel, B.M.: Side-channel leakage of masked CMOS gates. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 351–365. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30574-3_24

    Chapter  Google Scholar 

  42. Medwed, M., Standaert, F.-X., Großschädl, J., Regazzoni, F.: Fresh re-keying: security against side-channel and fault attacks for low-cost devices. In: Bernstein, D.J., Lange, T. (eds.) AFRICACRYPT 2010. LNCS, vol. 6055, pp. 279–296. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12678-9_17

    Chapter  Google Scholar 

  43. Ngo, K., Dubrova, E., Guo, Q., Johansson, T.: A side-channel attack on a masked IND-CCA secure saber KEM implementation. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2021(4), 676–707 (2021)

    Article  Google Scholar 

  44. Pietrzak, K.: Cryptography from learning parity with noise. In: Bieliková, M., Friedrich, G., Gottlob, G., Katzenbeisser, S., Turán, G. (eds.) SOFSEM 2012. LNCS, vol. 7147, pp. 99–114. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-27660-6_9

    Chapter  Google Scholar 

  45. Pessl, P., Mangard, S.: Enhancing side-channel analysis of binary-field multiplication with bit reliability. In: Sako, K. (ed.) CT-RSA 2016. LNCS, vol. 9610, pp. 255–270. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29485-8_15

    Chapter  Google Scholar 

  46. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: STOC, pp. 84–93. ACM (2005)

    Google Scholar 

  47. Regev, O.: The learning with errors problem (invited survey). In: Computational Complexity Conference, pp. 191–204. IEEE Computer Society (2010)

    Google Scholar 

  48. Ravi, P., Roy, S.S., Chattopadhyay, A., Bhasin, S.: Generic side-channel attacks on CCA-secure lattice-based PKE and KEMs. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2020(3), 307–335 (2020)

    Google Scholar 

  49. Schindler, W., Lemke, K., Paar, C.: A stochastic model for differential side channel cryptanalysis. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 30–46. Springer, Heidelberg (2005). https://doi.org/10.1007/11545262_3

    Chapter  Google Scholar 

  50. Standaert, F.-X., Malkin, T.G., Yung, M.: A unified framework for the analysis of side-channel key recovery attacks. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 443–461. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01001-9_26

    Chapter  Google Scholar 

  51. Standaert, F.-X., Peeters, E., Rouvroy, G., Quisquater, J.-J.: An overview of power analysis attacks against field programmable gate arrays. Proc. IEEE 94(2), 383–394 (2006)

    Article  Google Scholar 

  52. Udvarhelyi, B., Bronchain, O., Standaert, F.-X.: Security analysis of deterministic re-keying with masking and shuffling: application to ISAP. In: Bhasin, S., De Santis, F. (eds.) COSADE 2021. LNCS, vol. 12910, pp. 168–183. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-89915-8_8

    Chapter  MATH  Google Scholar 

  53. Ueno, R., Xagawa, K., Tanaka, Y., Ito, A., Takahashi, J., Homma, N.: Curse of re-encryption: a generic power/EM analysis on post-quantum KEMs. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2022(1), 296–322 (2022)

    Google Scholar 

  54. Veyrat-Charvillon, N., Medwed, M., Kerckhof, S., Standaert, F.-X.: Shuffling against side-channel attacks: a comprehensive study with cautionary note. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 740–757. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34961-4_44

    Chapter  Google Scholar 

  55. Yang, B.-Y., Chen, J.-M.: All in the XL family: theory and practice. In: Park, C., Chee, S. (eds.) ICISC 2004. LNCS, vol. 3506, pp. 67–86. Springer, Heidelberg (2005). https://doi.org/10.1007/11496618_7

    Chapter  Google Scholar 

  56. Yu, Yu., Steinberger, J.: Pseudorandom functions in almost constant depth from low-noise LPN. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 154–183. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_6

    Chapter  Google Scholar 

Download references

Acknowledgments

Pierrick Méaux was supported by the ERC project 787390 (acronym CLOUDMAP). François-Xavier Standaert is a senior research associate of the Belgian Fund for Scientific Research (FNRS-F.R.S.). This work has been funded in parts by the European Union through the ERC project 724725 (acronym SWORD) and by the Walloon Region Win2Wal project PIRATE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierrick Méaux .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hoffmann, C., Méaux, P., Momin, C., Rotella, Y., Standaert, FX., Udvarhelyi, B. (2023). Learning with Physical Rounding for Linear and Quadratic Leakage Functions. In: Handschuh, H., Lysyanskaya, A. (eds) Advances in Cryptology – CRYPTO 2023. CRYPTO 2023. Lecture Notes in Computer Science, vol 14083. Springer, Cham. https://doi.org/10.1007/978-3-031-38548-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-38548-3_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-38547-6

  • Online ISBN: 978-3-031-38548-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics