Skip to main content

Tailoring Quantum Matter in the Second Quantum Revolution

  • Conference paper
  • First Online:
Frontiers of Fundamental Physics FFP16 (FFP 2022)

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 392))

Included in the following conference series:

  • 45 Accesses

Abstract

Matter comes to us in many different forms, whose deep theoretical understanding and high experimental control is leading science into the so-called second quantum revolution, where condensed matter physics is gaining the centre of the stage. In this dizzying process, schools keep building up physics knowledge in chronological order, often starting late enough that modern physics is barely touched at all, resulting into a huge knowledge gap endangering the formation of even a basic culture. While numerous efforts are being conducted to introduce in high schools simple concepts of quantum mechanics, the urgent question arises about how students’ minds can be prepared to face an imminent future, that requires a basic understanding of the essential ideas underlying the physics of many interacting quantum particles, and of how this quantum matter can be tailored. In this contribution, we propose a conceptual framework to develop understanding on the occurrence of quantum matter ordering, trace the minimal needed toolbox, and discuss one specific example, i.e. the energy bands and transport properties of electrons in crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A Adams et al 2012, New J. Phys., 14, 115009

    Article  ADS  MathSciNet  Google Scholar 

  2. L. Pezzè, A. Smerzi, M. K. Oberthaler, R. Schmied, and P. Treutlein, Rev. Mod. Phys. 90, 035005 (2018)

    Article  ADS  Google Scholar 

  3. B. Bauer, S. Bravyi, M. Motta, and G. Kin-Lic Chan, Chem. Rev. 120, 12685 (2020)

    Google Scholar 

  4. H. K. E. Stadermann, E. van den Berg, M. J. Goedhart, Phys. Educ. Res. 15, 010130 (2019)

    Google Scholar 

  5. S.B. McKagan, K.K. Perkins, C.E. Wieman, Phys. Rev. ST Phys. Educ. Res. 4, 010103 (2008)

    Article  Google Scholar 

  6. M. Chiofalo, Comm. in Computer and Information Science 1542, 100 (2022)

    Article  Google Scholar 

  7. S. Goorney, C. Foti, L. Santi, J. Sherson, J. Yago Malo, and M. Chiofalo, Education Sciences 12, 474 (2022)

    Google Scholar 

  8. QPlayLearn, http://www.qplaylearn.com Cited 31 October 2022

    Google Scholar 

  9. C. Foti, D. Anttila, S. Maniscalco, and M. L. Chiofalo, Universe 7, 86 (2021)

    Google Scholar 

  10. QTEdu-CSA Coord. and Supp. Action for Quantum Technology Education and pilots, a Quantum Flagship initiative https://qtedu.eu/ Cited 31 October 2022

  11. Z. C. Seskir et al., Optical Engineering 61, 081809 (2022)

    Article  ADS  Google Scholar 

  12. P.M. Chaikin and T.C. Lubensky, Principles of Condensed Matter Physics(Cambridge Un. Press, Cambridge, 1995)

    Book  Google Scholar 

  13. P. Coleman, Introduction to Many-Body Physics (Cambridge Un. Press, Cambridge, 2015)

    Book  Google Scholar 

  14. P.C. Martin, Measurements and Correlation Functions (Gordon and Breach, 1968)

    Google Scholar 

  15. G. Baym, in BCS:50 years, ed. by L.N. Cooper and D. Feldman, BCS from Nuclei and Neutron Stars to Quark Matter and Cold Atoms (World Scientific, New Jersey, 2011), p. 509

    Google Scholar 

  16. P. Ball, Nature 474, 272274 (2011)

    Google Scholar 

  17. R.P. Feynman, Richard, Intl. J. of Theoretical Phys. 21, 467 (1982).

    Article  ADS  Google Scholar 

  18. A. Mazurenko et al., Nature volume 545, 462 (2017)

    Article  ADS  Google Scholar 

  19. M. Greiner, O. Mandel, T. Esslinger, T. Hansch, I. Bloch, Nature 415, 39 (2002)

    Article  ADS  Google Scholar 

  20. M. Atala, M. Aidelsburger, M. Lohse, J. T. Barreiro, B. Paredes, I. Bloch, Nature Physics 10, 588 (2014)

    Article  ADS  Google Scholar 

  21. M. Di Dio, R. Citro, S. De Palo, E. Orignac, M. Chiofalo, European Physical Journal: Special Topics 224, 525 (2015)

    ADS  Google Scholar 

  22. M. Schreiber et al., Science 349, 842 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  23. F. Alet and N. Laflorencie, Comptes Rendus Physique 19, 498 (2018)

    Article  ADS  Google Scholar 

  24. V. D. Vaidya et al., Phys. Rev. X 8, 011002 (2018)

    Google Scholar 

  25. A. Daley, Adv. Phys. 63, 77 (2014)

    Article  ADS  Google Scholar 

  26. E. Colella, R. Citro, M. Barsanti, D. Rossini, M. L. Chiofalo, Phys. Rev. B 97, 134502 (2018)

    Article  ADS  Google Scholar 

  27. A. Bylinskii, D. Gangloff, I. Counts, and V. Vuletić, Nat. Mater. 15, 717 (2016).

    Article  ADS  Google Scholar 

  28. P. Bonetti, A. Rucci, M. Chiofalo, V. Vuletić, Phys. Rev. Res. 3, 13031 (2021)

    Article  Google Scholar 

  29. C. Barcelo, S. Liberati, M. Visser, Living Rev. Relativity 8, 12 (2005)

    Article  ADS  Google Scholar 

  30. G. Volovik, Phys. Rep. 351, 195 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  31. J. Steinhauer, Nat. Phys. 12, 959 (2016)

    Article  Google Scholar 

  32. J. Hu, L. Feng, Z. Zhang, C. Chin, Nat. Phys. 15, 785 (2019)

    Article  Google Scholar 

  33. M. Mannarelli, D. Grasso, S. Trabucco, M. Chiofalo, Phys. Rev. D 103, 076001 (2021)

    Article  ADS  Google Scholar 

  34. G. Tino and M. Kasevich, Atom interferometry, Intl. School of Phys. E. Fermi (IOS Press, 2014)

    Google Scholar 

  35. ACME collaboration, Nature 562, 355 (2018)

    Google Scholar 

  36. W. B. Cairncross et al., Phys. Rev. Lett. 119, 153001 (2017)

    Article  ADS  Google Scholar 

  37. G. Tino et al., Eur. Phys. J. D 73, 228 (2019)

    Article  ADS  Google Scholar 

  38. V. Ivanov et al., Phys. Rev. Letters 100, 43601 (2008)

    Article  Google Scholar 

  39. L. Lucchesi and M. Chiofalo, Phys. Rev. Lett. 123, 60406 (2019)

    Article  ADS  Google Scholar 

  40. A. Bertoldi et al., Exp. Astronomy, 51, 1417 (2021)

    Article  ADS  Google Scholar 

  41. H. Ahlers et al., https://arxiv.org/abs/2211.15412 (2022)

  42. T. Bothwell et al., Nature 602, 420 (2022)

    Article  ADS  Google Scholar 

  43. E. Zohar, J. I. Cirac, B. Reznik, Phys. Rev. A 88, 023617 (2013)

    Article  ADS  Google Scholar 

  44. E.A. Martinez et al., Nature 534, 516 (2016)

    Article  ADS  Google Scholar 

  45. B. Adams and F. Petruccione, AVS Quantum Sci. 2, 022901 (2020)

    Article  ADS  Google Scholar 

  46. Open Un. Digital Archive, https://www.open.ac.uk/library/digital-archive/program/ video:00525_4019 . Cited 31 October 2022

  47. M. Chiofalo et al., Phys.: Conf. Series 2727, 12010 (2024) https://doi.org/10.1088/1742-6596/2727/1/012010

  48. M. Chiofalo, C. Foti, M. Michelini, A. Santi, L. Stefanel, Education Sciences 12, 446 (2022); Montagnani et al., Physics Educ. 58(3), 35003 (2023)

    Article  Google Scholar 

  49. M. Bondani et al., Physics 4 4, 1150 (2022)

    Article  ADS  Google Scholar 

  50. Qiskit https://qiskit.org/. Cited 31 October 2022

  51. S. Faletić and T. Kranjc, J. of Physics: Conf. Series 1929, GIREP-ICPE-EPEC-MPTL (2019)

    Google Scholar 

  52. A. Aspect and M. Inguscio, Physics Today 62, 30 (2009)

    Article  Google Scholar 

  53. G. Iadonisi, G. Cantele, M. Chiofalo, Introduction to Solid State Physics and Crystalline Nanostructures (Springer, Italia, 2014)

    Book  Google Scholar 

  54. DigiQ: Digitally Enhanced European Quantum Technology Master https://ec.europa.eu/. Cited 31 October 2022

Download references

Acknowledgements

I am heartily grateful to Marisa Michelini, who encouraged me to touch base with this complex, hypermetropic topic, I would also like to deeply thank Sabrina Maniscalco, Caterina Foti, Jacob Sherson, Carrie Ann Weidner, Simon Goorney, Zeki Seskir and all the fantastic QTEdu and QUTE4E teams, Gugliemo Tino and Leonardo Salvi. This project has received funding from the European Union’s Digital Europe Programme DIGIQ under grant agreement no. 101084035, and from the National Centre on HPC, Big Data and Quantum Computing – SPOKE 10 (Quantum Computing) – European Union Next-GenerationEU – National Recovery and Resilience Plan (NRRP) – MISSION 4 COMPONENT 2, INVESTMENT N. 1.4 – CUP N. I53C22000690001. I acknowledge support from the project PRA_2022_2023_98 “IMAGINATION” and from the MIT-UNIPI program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Luisa Chiofalo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chiofalo, M.L. (2024). Tailoring Quantum Matter in the Second Quantum Revolution. In: Aydiner, E., Sidharth, B.G., Michelini, M., Corda, C. (eds) Frontiers of Fundamental Physics FFP16. FFP 2022. Springer Proceedings in Physics, vol 392. Springer, Cham. https://doi.org/10.1007/978-3-031-38477-6_13

Download citation

Publish with us

Policies and ethics