Skip to main content

Coupled Early Dark Energy

  • Conference paper
  • First Online:
Frontiers of Fundamental Physics FFP16 (FFP 2022)

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 392))

Included in the following conference series:

  • 47 Accesses

Abstract

Early dark energy has emerged as one of the more promising approaches to address the Hubble tension—the statistically significant disparity between measurements of the Hubble constant made using data from different epochs in cosmic history. However, the idea is not without its own set of challenges, both from the data, in the effects it has on other measurements, such as the large-scale structure tension, and from theoretical concerns such as technical naturalness and the introduction of a new coincidence problem in cosmology. In this brief note, delivered as an invited plenary lecture at the 16th Frontiers of Fundamental Physics conference, I discuss how some of the fine-tuning problems of early dark energy can be ameliorated by using couplings to other fields already present in cosmology, and for which the epoch of matter-radiation equality is already a special one. The resulting models—neutrino assisted early dark energy, and chameleon early dark energy—provide testable, theoretically robust implementations of this general idea. I will discuss the formulation and the cosmology of such approaches, including some constraints arising from both observational and theoretical considerations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K. Aylor, M. Joy, L. Knox, M. Millea, S. Raghunathan and W. L. K. Wu, (2019), Astrophys. J., 874, 4.

    Article  ADS  Google Scholar 

  2. K. C. Wong and others, (2020), Mon. Not. Roy. Astron. Soc., 498, 1420-1439.

    Article  ADS  Google Scholar 

  3. L. Verde, T. Treu and A. G. Riess, (2019), Nature Astron., 891, 3.

    Google Scholar 

  4. L. Knox and M. Millea, (2020), Phys. Rev. D, 101, 043533.

    Article  ADS  MathSciNet  Google Scholar 

  5. E. L. Fitzpatrick, I. Ribas, E. F. Guinan, L. F. DeWarf, F. P. Maloney and D. Massa, (2000), astro-ph/0010526.

    Google Scholar 

  6. G. F. Benedict, B. E. McArthur, M. W. Feast, T. G. Barnes, T. E. Harrison, R. J. Patterson, J. W. Menzies, J. L. Bean, and W. L. Freedman, (2007), Astron. J., 133 1810-1827 , [Erratum: Astron. J. 133, 2980 (2007)].

    Google Scholar 

  7. E. M. L. Humphreys, M. J. Reid, L. M. Moran, L. J. Greenhill and A. L. Argon, (2013), Astrophys. J., 775 13.

    Article  ADS  Google Scholar 

  8. G. Efstathiou, (2014), Mon. Not. Roy. Astron. Soc., 440, 1138–1152.

    Article  ADS  Google Scholar 

  9. M. Rigault and others, (2015), Astrophys. J., 802, 20.

    Article  ADS  Google Scholar 

  10. M. R. Becker, H. Desmond, E. Rozo, P. Marshall, and E. M. Rykoff, (2015), arxiv:1507.07523.

  11. T. Shanks, L. Hogarth, and N. Metcalfe, (2019), Mon. Not. Roy. Astron. Soc., 484, L64–L68.

    Article  ADS  Google Scholar 

  12. A. G. Riess, S. Casertano, D. Kenworthy, D. Scolnic and L. Macri, (2018) arxiv:1810.03526.

  13. W. D’Arcy Kenworthy, D.Scolnic and A. Riess, (2019), Astrophys. J., 875 145.

    Article  ADS  Google Scholar 

  14. D. N. Spergel, R. Flauger and R. Hložek, (2015), Phys. Rev. D, 91 023518.

    Article  ADS  Google Scholar 

  15. T. Karwal and M. Kamionkowski, (2016), Phys. Rev. D, 94, 103523.

    Article  ADS  Google Scholar 

  16. T. L. Smith, V. Poulin and M. A. Amin, (2020), Phys. Rev. D, 101, 063523.

    Article  ADS  MathSciNet  Google Scholar 

  17. J. Sakstein, and M. Trodden, (2020), Phys. Rev. Lett., 124, 161301.

    Article  ADS  Google Scholar 

  18. G. M. Carrillo, Q. Liang, J. Sakstein and M. Trodden, (2021), JCAP, 4, 063.

    Article  ADS  Google Scholar 

  19. N. Aghanim and others, Planck Collobration, (2020), Astron. Astrophys., 641, A6, [Erratum: Astron.Astrophys. 652, C4 (2021)].

    Google Scholar 

  20. M. Aker and others, KATRIN Collobration, (2019), Phys. Rev. Lett., 123, 221802 (2019).

    Google Scholar 

  21. T. Karwal, M. Raveri, B. Jain, J. Khoury and M. Trodden, (2022), Phys. Rev. D, 105, 063535.

    Article  ADS  Google Scholar 

  22. M. Kamionkowski, J. Pradler, D. G. Walker and G. E. Devin, (2014), Phys. Rev. Lett., 113, 251302.

    Google Scholar 

  23. P. Brax, C. van de Bruck, and A.-C. Davis, J. Khoury and A. Weltman, (2004), Phys. Rev. D, 70, 123518 (2004).

    Google Scholar 

  24. P. Agrawal, F.-Y. Cyr-Racine, D. Pinner, L. Randall, (2019), arxiv:1904.01016.

  25. T. Damour, A. M. Polyakov, (1994), Nucl. Phys. B, 423, 532-558.

    Article  ADS  Google Scholar 

  26. M. Gasperini, F. Piazza, G. Veneziano, (2002), Phys. Rev. D, 65, 023508.

    Article  ADS  Google Scholar 

  27. P. Brax, C. van de Bruck, A.-C. Davis, D. Shaw, (2010), Phys. Rev. D, 82, 063519.

    Article  ADS  Google Scholar 

  28. I. M. Oldengott, C. Rampf, Y. Y. Y. Wong, (2015), JCAP, 4, 016.

    Article  ADS  Google Scholar 

  29. J. Khoury and A. Weltman, (2004), Phys. Rev. Lett., 93, 171104.

    Article  ADS  Google Scholar 

  30. J. Khoury and A. Weltman, (2004), Phys. Rev. D, 69, 044026.

    Article  ADS  MathSciNet  Google Scholar 

  31. A. Riess and others, (2021), ApJL, 934, L7.

    Google Scholar 

  32. W. L. Freedman, B. F. Madore, T. Hoyt, I. S. Jang, R. Beaton, M. G. Lee, A. Monson, J. Neeley, and J. Rich, Jeffrey (2020), ApJL, 891, 57.

    Google Scholar 

  33. J. L. Bernal, L. Verde and A. G. Riess, (2016), JCAP, 10, 019.

    Article  ADS  Google Scholar 

  34. J. Evslin, A. A. Sen and Ruchika, (2018), Phys. Rev. D, 97, 103511.

    Google Scholar 

  35. S. Birrer and others, (2020), Astron. Astrophys., 643, A165.

    Google Scholar 

  36. V. Poulin, T. L. Smith, D. Grin, T. Karwal, and M. Kamionkowski, (2018), Phys. Rev. D, 98, 083525.

    Google Scholar 

  37. V. Poulin, T. L. Smith, T. Karwal and M. Kamionkowski, (2019), Phys. Rev. Lett., 122, 221301.

    Google Scholar 

  38. C.-P. Ma and E. Bertschinger, (1995), Astrophys. J., 455, 7–25.

    Google Scholar 

Download references

Acknowledgements

I would like to thank the organizers of the 16th Frontiers of Fundamental Physics conference for the invitation to deliver this talk, and for curating such an interesting roster of other presentations. I am extremely grateful to Tanvi Karwal for providing comments on this manuscript. I would also like to thank Mariana Carrillo Gonzalez, Bhuvnesh Jain, Tanvi Karwal, Justin Khoury, Qiuyue Liang, Marco Raveri, and Jeremy Sakstein for thoroughly enjoyable collaborations. This work was supported in part by US Department of Energy (HEP) Award DE- SC0013528, and by NASA ATP grant 80NSSC18K0694.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Trodden .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Trodden, M. (2024). Coupled Early Dark Energy. In: Aydiner, E., Sidharth, B.G., Michelini, M., Corda, C. (eds) Frontiers of Fundamental Physics FFP16. FFP 2022. Springer Proceedings in Physics, vol 392. Springer, Cham. https://doi.org/10.1007/978-3-031-38477-6_12

Download citation

Publish with us

Policies and ethics