Skip to main content

Challenges in Particle Physics and Cosmology

  • Conference paper
  • First Online:
Frontiers of Fundamental Physics FFP16 (FFP 2022)

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 392))

Included in the following conference series:

  • 50 Accesses

Abstract

We present the proposal that the superpartner of the goldstino (sgoldstino),which is the source of the supersymmetry breaking, acts as the inflaton. The so-called eta problem can be avoided by imposing a linear superpotential. The inflaton is charged under a gauged \(U(1)_R\)—symmetry. This creates an interesting class of small field inflation models with an inflationary plateau around the maximum of the scalar potential near the origin, where R-symmetry is restored as the inflaton rolls down to a minimum describing the current phase of the universe. The minimum has a positive tuneable vacuum energy, whereas the inflation can be caused by either an F- or a D-term. The models are consistent with cosmological evidence and anticipate a relatively low tensor-to-scalar ratio of primordial perturbations in the simplest scenario. We explored the inflaton’s decay modes after coupling it to the (supersymmetric) Standard Model, with the resulting reheating temperature being roughly \(10^8\) GeV.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The mass dimensions of Kähler potential, superpotential, gauge kinetic function, Killing potential, and Killing vector are \([\mathcal K]=M^2\), \([\mathcal W]=M^3\), \([\mathcal F_{AB}]=M^0\), \([\mathcal{D}_{A}]=M^2\), \([X^I_{A}]=M\), respectively while scalar fields have canonical mass dimension M.

  2. 2.

    In [8], a generalisation version of the Fayet-Iliopoulos (FI) model [9] was introduced as an example of the microscopic origin for the effective field theory of this class of inflation models.

  3. 3.

    We choose non-SUSY running of the couplings because SUSY breaking scale is very high in our models.

  4. 4.

    At the quantum level, a Kähler transformation also introduces a change in the gauge kinetic function f, see for example [18].

  5. 5.

    In order to cancel the chiral anomalies [2], the gauge kinetic function gets a field-dependent correction \(\propto q^2\ln \rho \). However, the correction turns out to be very small and can be neglected below, since q is chosen to be of order of \(10^{-5}\) or smaller.

References

  1. Antoniadis, I., Chatrabhuti, A., Isono, H., Knoops, R., Inflation from Supergravity with Gauged R-symmetry in de Sitter Vacuum, Eur. Phys. J. C 76, no.12, 680 (2016) https://doi.org/10.1140/epjc/s10052-016-4539-1

  2. Antoniadis, I., Chatrabhuti, A., Isono, H., Knoops, R., Inflation from Supersymmetry Breaking, Eur. Phys. J. C 77, no.11, 724 (2017) https://doi.org/10.1140/epjc/s10052-017-5302-y

  3. Cribiori, N., Farakos, F., Tournoy, M., Van Proeyen, A., Fayet-Iliopoulos terms in supergravity without gauged R-symmetry, JHEP 04, 032 (2018), https://doi.org/10.1007/JHEP04(2018)032

    Article  ADS  MathSciNet  Google Scholar 

  4. Kuzenko, S.M., Taking a vector supermultiplet apart: Alternative Fayet-Iliopoulos-type terms, Phys. Lett. B 781, 723 (2018), https://doi.org/10.1016/j.physletb.2018.04.051

    Article  ADS  Google Scholar 

  5. Aldabergenov, Y., Antoniadis, I., Chatrabhuti, A., Isono, H., Reheating after inflation by supersymmetry breaking, Eur. Phys. J. C 81, no.12, 1078 (2021), https://doi.org/10.1140/epjc/s10052-021-09862-7

  6. Wess, J.,Bagger, J., Supersymmetry and supergravity, 2nd edn. (Princeton University Press, 1992)

    Google Scholar 

  7. Antoniadis, I., Chatrabhuti, A., Isono, H., Sypsas, S., Note on initial conditions for small-field inflation, Phys. Rev. D 102, no.10, 103510 (2020) https://doi.org/10.1103/PhysRevD.102.103510

  8. Antoniadis, I., Chatrabhuti, A., Isono, H., Knoops, R., A microscopic model for inflation from supersymmetry breaking, Eur. Phys. J. C 79, no.7, 624 (2019) https://doi.org/10.1140/epjc/s10052-019-7141-5

  9. Fayet , P., Iliopoulos, J., Spontaneously Broken Supergauge Symmetries and Goldstone Spinors, Phys. Lett. B 51, 461 (1974) https://doi.org/10.1016/0370-2693(74)90310-4

    Article  ADS  Google Scholar 

  10. Freedman, D.Z., Kors, B., Kaehler anomalies in Supergravity and flux vacua, JHEP 11, 067 (2006) https://doi.org/10.1088/1126-6708/2006/11/067

    Article  ADS  Google Scholar 

  11. Elvang, H., Freedman, D.Z., Kors, B., Anomaly cancellation in supergravity with Fayet-Iliopoulos couplings, JHEP 11, 068 (2006) https://doi.org/10.1088/1126-6708/2006/11/068

    Article  ADS  MathSciNet  Google Scholar 

  12. Antoniadis, I., Ghilencea, D.M., Knoops, R., Gauged R-symmetry and its anomalies in 4D N=1 supergravity and phenomenological implications, JHEP 02, 166 (2015) https://doi.org/10.1007/JHEP02(2015)166

    Article  ADS  MathSciNet  Google Scholar 

  13. Antoniadis, I., Knoops, R., MSSM soft terms from supergravity with gauged R-symmetry in de Sitter vacuum, Nucl. Phys. B 902, 69 (2016) https://doi.org/10.1016/j.nuclphysb.2015.11.010

    Article  ADS  MathSciNet  Google Scholar 

  14. Freedman, D.Z., Van Proeyen, A., Supergravity, (Cambridge Univ. Press, 2012)

    Book  Google Scholar 

  15. Kugo, T., Uehara, S., N=1 Superconformal Tensor Calculus: Multiplets With External Lorentz Indices and Spinor Derivative Operators, Prog. Theor. Phys. 73, 235 (1985)

    Google Scholar 

  16. Ferrara, S., Kallosh, R., Van Proeyen, A., Wrase, T., Linear Versus Non-linear Supersymmetry, in General, JHEP 04, 065 (2016), https://doi.org/10.1007/JHEP04(2016)065

    Article  ADS  MathSciNet  Google Scholar 

  17. Antoniadis, I., Chatrabhuti, A., Isono, H., Knoops, R., The cosmological constant in Supergravity, Eur. Phys. J. C 78, no.9, 718 (2018) https://doi.org/10.1140/epjc/s10052-018-6175-4

  18. Kaplunovsky, V., Louis, J., Field dependent gauge couplings in locally supersymmetric effective quantum field theories, Nucl. Phys. B 422, 57 (1994) https://doi.org/10.1016/0550-3213(94)00150-2

    Article  ADS  MathSciNet  Google Scholar 

  19. Antoniadis, I., Rondeau, F., New Kähler invariant Fayet-Iliopoulos terms in supergravity and cosmological applications, Eur. Phys. J. C 80, no.4, 346 (2020) https://doi.org/10.1140/epjc/s10052-020-7912-z

  20. Aldabergenov, Y., Chatrabhuti, A., Ketov, S.V., Generalized dilaton-axion models of inflation, de Sitter vacua and spontaneous SUSY breaking in supergravity, Eur. Phys. J. C 79, no.8, 713 (2019) https://doi.org/10.1140/epjc/s10052-019-7225-2

  21. Jang, H., Porrati, M., Inflation, gravity mediated supersymmetry breaking, and de Sitter vacua in supergravity with a Kähler-invariant Fayet-Iliopoulos term, Phys. Rev. D 103, no.10, 105006 (2021) https://doi.org/10.1103/PhysRevD.103.105006

Download references

Acknowledgements

This work was supported in part by the NSRF via the Program Management Unit for Human Resources and Institutional Development, Research and Innovation [grant number B05F650021]

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ignatios Antoniadis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Antoniadis, I., Chatrabhuti, A. (2024). Challenges in Particle Physics and Cosmology. In: Aydiner, E., Sidharth, B.G., Michelini, M., Corda, C. (eds) Frontiers of Fundamental Physics FFP16. FFP 2022. Springer Proceedings in Physics, vol 392. Springer, Cham. https://doi.org/10.1007/978-3-031-38477-6_1

Download citation

Publish with us

Policies and ethics