Skip to main content

Part of the book series: Wireless Networks ((WN))

  • 85 Accesses

Abstract

In this chapter, we introduce some typical wireless communication systems and networks, such as two-hop relay systems, ad hoc networks and cellular networks, followed by the introduction of the fundamentals of the physical layer security (PLA) technology in secure wireless communication, covert wireless communication, and authentication.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tse D, Viswanath P (2005) Fundamentals of wireless communication. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  2. Goldsmith A (2005) Wireless communications. Cambridge University Press, Cambridge

    Book  Google Scholar 

  3. Shannon CE (1949) Communication theory of secrecy systems. Bell Syst Tech J 28(4):656–715

    Article  MathSciNet  MATH  Google Scholar 

  4. Wyner AD (1975) The wire-tap channel. Bell Syst Tech J 54(8):1355–1387

    Article  MathSciNet  MATH  Google Scholar 

  5. Csiszár I, Korner J (1978) Broadcast channels with confidential messages. IEEE Trans Inf Theory 24(3):339–348

    Article  MathSciNet  MATH  Google Scholar 

  6. Leung-Yan-Cheong S, Hellman M (1978) The Gaussian wire-tap channel. IEEE Trans Inf Theory 24(4):451–456

    Article  MathSciNet  MATH  Google Scholar 

  7. Gopala PK, Lai L, El Gamal H (2008) On the secrecy capacity of fading channels. IEEE Trans Inf Theory 54(10):4687–4698

    Article  MathSciNet  MATH  Google Scholar 

  8. Khisti A, Wornell GW (2010) Secure transmission with multiple antennas part ii: The mimome wiretap channel. IEEE Trans Inf Theory 56(11):5515–5532

    Article  MathSciNet  MATH  Google Scholar 

  9. Hong Y-WP, Lan P-C, Kuo C-CJ (2013) Enhancing physical-layer secrecy in multiantenna wireless systems: An overview of signal processing approaches. IEEE Signal Process Mag 30(5):29–40

    Article  Google Scholar 

  10. Chen X, Ng DWK, Gerstacker WH, Chen H-H (2016) A survey on multiple-antenna techniques for physical layer security. IEEE Commun Surv Tutorials 19(2):1027–1053

    Article  Google Scholar 

  11. Li Q, Hong M, Wai H-T, Liu Y-F, Ma W-K, Luo Z-Q (2013) Transmit solutions for MIMO wiretap channels using alternating optimization. IEEE J Sel Areas Commun 31(9):1714–1727

    Article  Google Scholar 

  12. Cumanan K, Ding Z, Sharif B, Tian GY, Leung KK (2013) Secrecy rate optimizations for a MIMO secrecy channel with a multiple-antenna eavesdropper. IEEE Trans Veh Technol 63(4):1678–1690

    Article  Google Scholar 

  13. Chu Z, Cumanan K, Ding Z, Johnston M, Le Goff S (2014) Robust outage secrecy rate optimizations for a MIMO secrecy channel. IEEE Wireless Commun Lett 4(1):86–89

    Article  Google Scholar 

  14. Liao W-C, Chang T-H, Ma W-K, Chi C-Y (2010) Qos-based transmit beamforming in the presence of eavesdroppers: An optimized artificial-noise-aided approach. IEEE Trans Signal Process 59(3):1202–1216

    Article  MathSciNet  MATH  Google Scholar 

  15. Lin P-H, Lai S-H, Lin S-C, Su H-J (2013) On secrecy rate of the generalized artificial-noise assisted secure beamforming for wiretap channels. IEEE J Sel Areas Commun 31(9):1728–1740

    Article  Google Scholar 

  16. Li Q, Yang Y, Ma W-K, Lin M, Ge J, Lin J (2014) Robust cooperative beamforming and artificial noise design for physical-layer secrecy in AF multi-antenna multi-relay networks. IEEE Trans Signal Process 63(1):206–220

    Article  MathSciNet  MATH  Google Scholar 

  17. Zhou F, Chu Z, Sun H, Hu RQ, Hanzo L (2018) Artificial noise aided secure cognitive beamforming for cooperative MISO-NOMA using SWIPT. IEEE J Sel Areas Commun 36(4):918–931

    Article  Google Scholar 

  18. Fang H, Xu L, Choo K-KR (2017) Stackelberg game based relay selection for physical layer security and energy efficiency enhancement in cognitive radio networks. Appl Math Comput 296:153–167

    MathSciNet  MATH  Google Scholar 

  19. Nomikos N, Nieto A, Makris P, Skoutas DN, Vouyioukas D, Rizomiliotis P, Lopez J, Skianis C (2015) Relay selection for secure 5g green communications. Telecommun Syst 59(1):169–187

    Article  Google Scholar 

  20. Hu H, Lu R, Huang C, Zhang Z (2017) Ptrs: A privacy-preserving trust-based relay selection scheme in vanets. Peer-to-Peer Netw Appl 10(5):1204–1218

    Article  Google Scholar 

  21. Huang J, Swindlehurst AL (2014) Buffer-aided relaying for two-hop secure communication. IEEE Trans Wireless Commun 14(1):152–164

    Article  Google Scholar 

  22. El Shafie A, Sultan A, Al-Dhahir N (2016) Physical-layer security of a buffer-aided full-duplex relaying system. IEEE Commun Lett 20(9):1856–1859

    Article  Google Scholar 

  23. El Shafie A, Niyato D, Al-Dhahir N (2016) Enhancing the phy-layer security of MIMO buffer-aided relay networks. IEEE Wireless Commun Lett 5(4):400–403

    Article  Google Scholar 

  24. Chen G, Tian Z, Gong Y, Chen Z, Chambers JA (2014) Max-ratio relay selection in secure buffer-aided cooperative wireless networks. IEEE Trans Inf Forensics Secur 9(4):719–729

    Article  Google Scholar 

  25. Goel S, Negi R (2008) Guaranteeing secrecy using artificial noise. IEEE Trans Wireless Commun 7(6):2180–2189

    Article  Google Scholar 

  26. Wang H-M, Xia X-G (2015) Enhancing wireless secrecy via cooperation: Signal design and optimization. IEEE Commun Mag 53(12):47–53

    Article  Google Scholar 

  27. Lv L, Chen J, Yang L, Kuo Y (2017) Improving physical layer security in untrusted relay networks: cooperative jamming and power allocation. IET Commun 11(3):393–399

    Article  Google Scholar 

  28. Atapattu S, Ross N, Jing Y, Premaratne M (2019) Source-based jamming for physical-layer security on untrusted full-duplex relay. IEEE Commun Lett 23(5):842–846

    Article  Google Scholar 

  29. Kuhestani A, Mohammadi A (2016) Destination-based cooperative jamming in untrusted amplify-and-forward relay networks: resource allocation and performance study. IET Commun 10(1):17–23

    Article  Google Scholar 

  30. Shang X, Yin H, Wang Y, Li M, Wang Y (2021) Secure multiuser scheduling for hybrid relay-assisted wireless powered cooperative communication networks with full-duplex destination-based jamming. IEEE Access 9:49774–49787

    Article  Google Scholar 

  31. Jia L, Xu Y, Sun Y, Feng S, Yu L, Anpalagan A (2018) A game-theoretic learning approach for anti-jamming dynamic spectrum access in dense wireless networks. IEEE Trans Veh Technol 68(2):1646–1656

    Article  Google Scholar 

  32. Jia L, Xu Y, Sun Y, Feng S, Anpalagan A (2018) Stackelberg game approaches for anti-jamming defence in wireless networks. IEEE Wireless Commun 25(6):120–128

    Article  Google Scholar 

  33. Ju M, Kim D-H, Hwang K-S (2014) Opportunistic transmission of nonregenerative network with untrusted relay. IEEE Trans Veh Technol 64(6):2703–2709

    Article  Google Scholar 

  34. Sun L, Ren P, Du Q, Wang Y, Gao Z (2014) Security-aware relaying scheme for cooperative networks with untrusted relay nodes. IEEE Commun Lett 19(3):463–466

    Article  Google Scholar 

  35. Bash BA, Goeckel D, Towsley D (2013) Limits of reliable communication with low probability of detection on AWGN channels. IEEE J Sel Areas Commun 31(9):1921–1930

    Article  Google Scholar 

  36. Wang L, Wornell GW, Zheng L (2015) Limits of low-probability-of-detection communication over a discrete memoryless channel. In: 2015 IEEE International Symposium on Information Theory (ISIT). IEEE, pp 2525–2529

    Google Scholar 

  37. Ahmadipour M, Salehkalaibar S, Yassaee MH, Tan VY (2019) Covert communication over a compound discrete memoryless channel. In: 2019 IEEE International Symposium on Information Theory (ISIT). IEEE, pp 982–986

    Google Scholar 

  38. Che PH, Bakshi M, Jaggi S (2013) Reliable deniable communication: Hiding messages in noise. In: 2013 IEEE International Symposium on Information Theory. IEEE, pp 2945–2949

    Google Scholar 

  39. Arumugam KSK, Bloch MR (2017) Covert communication over broadcast channels. In: 2017 IEEE Information Theory Workshop (ITW). IEEE, pp 299–303

    Google Scholar 

  40. Arumugam KSK, Bloch MR (2016) Keyless covert communication over multiple-access channels. In: 2016 IEEE International Symposium on Information Theory (ISIT). IEEE, pp 2229–2233

    Google Scholar 

  41. Lann E (1959) Testing statistical hypotheses. Wiley, New York

    Google Scholar 

  42. Bash BA, Goeckel D, Towsley D (2013) Limits of reliable communication with low probability of detection on awgn channels. IEEE J Sel Areas Commun 31(9):1921–1930

    Article  Google Scholar 

  43. Soltani R, Bash B, Goeckel D, Guha S, Towsley D (2014) Covert single-hop communication in a wireless network with distributed artificial noise generation. In: 2014 52nd Annual Allerton Conference on communication, control, and computing (Allerton). IEEE, pp 1078–1085

    Google Scholar 

  44. Yan S, Cong Y, Hanly SV, Zhou X (2019) Gaussian signalling for covert communications. IEEE Trans Wireless Commun 18(7):3542–3553

    Article  Google Scholar 

  45. Hu J, Yan S, Zhou X, Shu F, Li J, Wang J (2018) Covert communication achieved by a greedy relay in wireless networks. IEEE Trans Wireless Commun 17(7):4766–4779

    Article  Google Scholar 

  46. Jiang Y, Wang L, Chen H-H (2020) Covert communications in d2d underlaying cellular networks with antenna array assisted artificial noise transmission. IEEE Trans Veh Technol 69(3):2980–2992

    Article  Google Scholar 

  47. Jiang Y, Wang L, Zhao H, Chen H-H (2020) Covert communications in d2d underlaying cellular networks with power domain noma. IEEE Syst J 14(3):3717–3728

    Article  Google Scholar 

  48. Bash BA, Goeckel D, Towsley D (2014) Lpd communication when the warden does not know when. In: 2014 IEEE International Symposium on Information Theory. IEEE, pp 606–610

    Google Scholar 

  49. He B, Yan S, Zhou X, Lau VK (2017) On covert communication with noise uncertainty. IEEE Commun Lett 21(4):941–944

    Article  Google Scholar 

  50. Tschofenig H, Eronen P (2005) Pre-shared key ciphersuites for Transport Layer Security (TLS), RFC 4279, Dec. 2005. [Online]. Available: https://www.rfc-editor.org/info/rfc4279

  51. Vollbrecht J, Carlson JD, Blunk L, Aboba DBD, Levkowetz H (2004) Extensible Authentication Protocol (EAP), RFC 3748, Jun. 2004. [Online]. Available: https://www.rfc-editor.org/info/rfc3748

  52. Rubens A, Willens S, Rigney C, Simpson WA (1997) Remote Authentication Dial In User Service (RADIUS), RFC 2058, Jan. 1997. [Online]. Available: https://www.rfc-editor.org/info/rfc2058

  53. Yu PL, Baras JS, Sadler BM (2008) Physical-layer authentication. IEEE Trans Inf Forensics Secur 3(1):38–51

    Article  Google Scholar 

  54. Xie N, Li Z, Tan H (2021) A survey of physical-layer authentication in wireless communications. IEEE Commun Surv Tutorials 23(1):282–310

    Article  Google Scholar 

  55. Zeng S, Chen Y, Li X, Zhu J, Shen Y, Shiratori N (2022) Visibility graph entropy based radiometric feature for physical layer identification. Ad Hoc Networks 127:102780. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1570870522000014

  56. Xu Q, Zheng R, Saad W, Han Z (2016) Device fingerprinting in wireless networks: Challenges and opportunities. IEEE Commun Surv Tutorials 18(1):94–104

    Article  Google Scholar 

  57. Jagannath A, Jagannath J, Kumar PSPV (2022) A comprehensive survey on radio frequency (rf) fingerprinting: Traditional approaches, deep learning, and open challenges. Preprint. arXiv:2201.00680

    Google Scholar 

  58. Zhang P, Liu J, Shen Y, Jiang X (2021) Exploiting channel gain and phase noise for phy-layer authentication in massive MIMO systems. IEEE Trans Inf Forensics Secur 16:4265–4279

    Article  Google Scholar 

  59. Zhang P, Taleb T, Jiang X, Wu B (2020) Physical layer authentication for massive MIMO systems with hardware impairments. IEEE Trans Wireless Commun 19(3):1563–1576

    Article  Google Scholar 

  60. Zhang P, Shen Y, Jiang X, Wu B (2020) Physical layer authentication jointly utilizing channel and phase noise in MIMO systems. IEEE Trans Commun 68(4):2446–2458

    Article  Google Scholar 

  61. Jakes WC, Cox DC (1994) Microwave mobile communications. Wiley, New York

    Book  Google Scholar 

  62. Xiao L, Greenstein LJ, Mandayam NB, Trappe W (2009) Channel-based spoofing detection in frequency-selective Rayleigh channels. IEEE Trans Wireless Commun 8(12):5948–5956

    Article  Google Scholar 

  63. Xiao L, Greenstein LJ, Mandayam NB, Trappe W (2008) Using the physical layer for wireless authentication in time-variant channels. IEEE Trans Wireless Commun 7(7):2571–2579

    Article  Google Scholar 

  64. Zeng K, Govindan K, Mohapatra P (2010) Non-cryptographic authentication and identification in wireless networks. IEEE Wireless Commun 17(5):56–62

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shen, Y., Zhang, Y., Jiang, X. (2023). Introduction. In: Secrecy, Covertness and Authentication in Wireless Communications. Wireless Networks. Springer, Cham. https://doi.org/10.1007/978-3-031-38465-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-38465-3_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-38464-6

  • Online ISBN: 978-3-031-38465-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics