Skip to main content

Approach to Lung Nodules

  • Chapter
  • First Online:
Lung Cancer

Part of the book series: Respiratory Medicine ((RM))

Abstract

Pulmonary nodules are commonly identified incidentally on imaging performed for patient symptoms or through low-dose computed tomography for lung cancer screening. Clinicians are challenged with managing these nodules, which can be difficult as these can represent a wide range of benign and malignant diseases. Expert recommendations on diagnostic evaluation and numerous validated models that integrate patient demographics, behaviors, and nodule characteristics can be used to predict probability of malignancy and guide nodule management. Diagnostic evaluation of pulmonary nodules requires considerations of individualized risks of malignancy and the risks inherent in the diagnostic work-up to optimize the benefit-to-risk ratio. Ideally, evaluation of pulmonary nodules balances the need to diagnose early lung cancer with minimizing the risks of invasive evaluations for benign nodules and the possible risks of delayed diagnosis. Understanding the approach to pulmonary nodules, including current techniques and future directions, is essential to providing the best personalized care for patients. In this chapter, we discuss the subtypes and classifications of pulmonary nodules, imaging techniques, landmark trials, and society recommendations on the approach to management, current diagnostic approaches, and future directions of the field, including promising diagnostic biomarkers for pulmonary nodules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gould MK, Tang T, Liu I-LA, Lee J, Zheng C, Danforth K, et al. Recent trends in the identification of incidental pulmonary nodules. Am J Respir Crit Care Med. 2015;192(10):1208–14.

    Article  PubMed  Google Scholar 

  2. Aberle DR, Adams AM, Berg CD, Black WC, Clapp JD, Fagerstrom RM, et al. The National Lung Screening Trial Research Team. Reduced lung-cancer mortality with low-dose computed tomographic screening. N Engl J Med. 2011;265(5):395–409.

    Google Scholar 

  3. Kinsinger LS, Anderson C, Kim J, Larson M, Chan SH, King HA, et al. Implementation of lung cancer screening in the veterans health administration. JAMA Intern Med. 2017;177(3):399–406. https://doi.org/10.1001/jamainternmed.2016.9022.

    Article  PubMed  Google Scholar 

  4. Mazzone PJ, Lam L. Evaluating the patient with a pulmonary nodule: a review. JAMA. 2022;327(3):264–73. https://doi.org/10.1001/jama.2021.24287.

    Article  PubMed  Google Scholar 

  5. McWilliams A, Tammemagi MC, Mayo JR, Roberts H, Liu G, Soghrati K, et al. Probability of cancer in pulmonary nodules detected on first screening CT. N Engl J Med. 2013;369(10):910–9. https://doi.org/10.1056/NEJMoa1214726.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Verdial FC, Madtes DK, Cheng GS, Pipavath S, Kim R, Hubbard JJ, et al. Multidisciplinary team-based management of Incidentally detected lung nodules. Chest. 2020;157(4):985–93. https://doi.org/10.1016/j.chest.2019.11.032.

    Article  PubMed  Google Scholar 

  7. Erasmus JJ, Connolly JE, McAdams P, Roggli VL. Solitary pulmonary nodules: part I. morphologic evaluation for differentiation of benign and malignant lesions. Radiographics. 2000;20:43–58.

    Article  CAS  PubMed  Google Scholar 

  8. Durhan G, Ardali Duzgun S, Akpinar MG, Demirkazik F, Ariyurek OM. Imaging of congenital lung diseases presenting in the adulthood: a pictorial review. Insights Imaging. 2021;12(1):153. https://doi.org/10.1186/s13244-021-01095-2.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer J Clin. 2022;72(1):7–33. https://doi.org/10.3322/caac.21708.

    Article  PubMed  Google Scholar 

  10. The Health Consequences of Smoking - 50 Years of Progress. A report of the surgeon general. In: Services. USDoHaH ed. Atlanta: Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Chronic Disease Prevention and Health Promotion, Office on Smoking and Health; 2014.

    Google Scholar 

  11. Tindle HA, Stevenson Duncan M, Greevy RA, Vasan RS, Kundu S, Massion PP, et al. Lifetime smoking history and risk of lung cancer: results from the Framingham heart study. J Natl Cancer Inst. 2018;110(11):1201–7. https://doi.org/10.1093/jnci/djy041.

    Article  PubMed  PubMed Central  Google Scholar 

  12. El-Zaatari ZM, Chami HA, Zaatari GS. Health effects associated with waterpipe smoking. Tob Control. 2015;24(Suppl 1):i31–43. https://doi.org/10.1136/tobaccocontrol-2014-051908.

    Article  PubMed  Google Scholar 

  13. McCormack VA, Agudo A, Dahm CC, Overvad K, Olsen A, Tjonneland A, et al. Cigar and pipe smoking and cancer risk in the European prospective investigation into cancer and nutrition (EPIC). Int J Cancer. 2010;127(10):2402–11. https://doi.org/10.1002/ijc.25252.

    Article  CAS  PubMed  Google Scholar 

  14. Subramanian J, Govindan R. Lung cancer in 'Never-Smokers': a unique entity. Oncology. 2010;24(1):29–35.

    PubMed  Google Scholar 

  15. Lee HW, Park SH, Weng MW, Wang HT, Huang WC, Lepor H, et al. E-cigarette smoke damages DNA and reduces repair activity in mouse lung, heart, and bladder as well as in human lung and bladder cells. Proc Natl Acad Sci U S A. 2018;115(7):E1560–E9. https://doi.org/10.1073/pnas.1718185115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tang MS, Wu XR, Lee HW, Xia Y, Deng FM, Moreira AL, et al. Electronic-cigarette smoke induces lung adenocarcinoma and bladder urothelial hyperplasia in mice. Proc Natl Acad Sci U S A. 2019;116(43):21727–31. https://doi.org/10.1073/pnas.1911321116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. MacRosty CR, Rivera MP. Lung cancer in women: a modern epidemic. Clin Chest Med. 2020;41(1):53–65. https://doi.org/10.1016/j.ccm.2019.10.005.

    Article  PubMed  Google Scholar 

  18. Sun S, Schiller JH, Gazdar AF. Lung cancer in never smokers—a different disease. Nat Rev Cancer. 2007;7(10):778–90. https://doi.org/10.1038/nrc2190.

    Article  CAS  PubMed  Google Scholar 

  19. Brims FJH, Kong K, Harris EJA, Sodhi-Berry N, Reid A, Murray CP, et al. Pleural plaques and the risk of lung cancer in Asbestos-exposed subjects. Am J Respir Crit Care Med. 2020;201(1):57–62. https://doi.org/10.1164/rccm.201901-0096OC.

    Article  PubMed  Google Scholar 

  20. Ngamwong Y, Tangamornsuksan W, Lohitnavy O, Chaiyakunapruk N, Scholfield CN, Reisfeld B, et al. Additive synergism between Asbestos and smoking in lung cancer risk: a systematic review and meta-analysis. PLoS One. 2015;10(8):e0135798. https://doi.org/10.1371/journal.pone.0135798.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Loverdos K, Fotiadis A, Kontogianni C, Iliopoulou M, Gaga M. Lung nodules: a comprehensive review on current approach and management. Ann Thorac Med. 2019;14(4):226–38. https://doi.org/10.4103/atm.ATM_110_19.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Carlos WG, Rose AS, Wheat LJ, Norris S, Sarosi GA, Knox KS, et al. Blastomycosis in Indiana: digging up more cases. Chest. 2010;138(6):1377–82. https://doi.org/10.1378/chest.10-0627.

    Article  PubMed  Google Scholar 

  23. Shipe ME, Deppen SA, Sullivan S, Kammer M, Starnes SL, Wilson DO, et al. Validation of histoplasmosis enzyme immunoassay to evaluate suspicious lung nodules. Ann Thorac Surg. 2021;111(2):416–20. https://doi.org/10.1016/j.athoracsur.2020.05.101.

    Article  PubMed  Google Scholar 

  24. Mazzone PJ, Wang XF, Lim S, Jett J, Choi H, Zhang Q, et al. Progress in the development of volatile exhaled breath signatures of lung cancer. Ann Am Thorac Soc. 2015;12(5):752–7. https://doi.org/10.1513/AnnalsATS.201411-540OC.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Slatore CG, Wiener RS. Pulmonary nodules: a small problem for many, severe distress for some, and how to communicate about it. Chest. 2018;153(4):1004–15. https://doi.org/10.1016/j.chest.2017.10.013.

    Article  PubMed  Google Scholar 

  26. Oken MM, Hocking WG, Kvale PA, Andriole GL, Buya SS, Church TR, et al. Screening by chest radiograph and lung cancer mortality: the prostate, lung, colorectal, and ovarian (PLCO) randomized trial. JAMA. 2011;306(17):E1–9.

    Article  Google Scholar 

  27. Blanchon T, Brechot JM, Grenier PA, Ferretti GR, Lemarie E, Milleron B, et al. Baseline results of the Depiscan study: a French randomized pilot trial of lung cancer screening comparing low dose CT scan (LDCT) and chest X-ray (CXR). Lung Cancer. 2007;58(1):50–8. https://doi.org/10.1016/j.lungcan.2007.05.009.

    Article  PubMed  Google Scholar 

  28. Kaneko M, Eguchi K, Ohmatsu H, Kakinuma R, Naruke T, Suemasu K, et al. Peripheral lung cancer: screening and detection with low-dose Sprial CT versus radiography. Radiology. 1996;201:798–802.

    Article  CAS  PubMed  Google Scholar 

  29. Diederich S, Lenzen H. Radiation exposure associated with imaging of the chest: comparison of different radiographic and computed tomography techniques. Cancer. 2000;89(11):2457–60.

    Article  CAS  PubMed  Google Scholar 

  30. MacMahon H, Naidich DP, Goo JM, Lee KS, Leung ANC, Mayo JR, et al. Guidelines for management of incidental pulmonary nodules detected on CT images: from the Fleischner society 2017. Radiology. 2017;284(1):228–43. https://doi.org/10.1148/radiol.2017161659.

    Article  PubMed  Google Scholar 

  31. Godoy MCB, Naidich DP. Subsolid pulmonary nodules and the spectrum of peripheral adenocarcinomas of the lung: recommended interim guidelines for assessment and management. Radiology. 2009;253(3):606–22.

    Article  PubMed  Google Scholar 

  32. Devaraj A, van Ginneken B, Nair A, Baldwin D. Use of volumetry for lung nodule management: theory and practice. Radiology. 2017;284(3):630–44. https://doi.org/10.1148/radiol.2017151022.

    Article  PubMed  Google Scholar 

  33. Wormanns D, Kohl G, Klotz E, Marheine A, Beyer F, Heindel W, et al. Volumetric measurements of pulmonary nodules at multi-row detector CT: in vivo reproducibility. Eur Radiol. 2004;14(1):86–92. https://doi.org/10.1007/s00330-003-2132-0.

    Article  PubMed  Google Scholar 

  34. Gietema H, Schaefer-Prokop CM, Mali WPTM, Groenewegen G, Prokop M. Pulmonary nodules: interscan variabiity of Semiautomated volume measurements with multisection CT—influence of inspiration level, nodule size, and segmentation performance. Radiology. 2007;245(3):888–94.

    Article  PubMed  Google Scholar 

  35. Oudkerk M, Devaraj A, Vliegenthart R, Henzler T, Prosch H, Heussel CP, et al. European position statement on lung cancer screening. Lancet Oncol. 2017;18(12):e754–e66. https://doi.org/10.1016/s1470-2045(17)30861-6.

    Article  PubMed  Google Scholar 

  36. de Koning HJ, van der Aalst CM, de Jong PA, Scholten ET, Nackaerts K, Heuvelmans MA, et al. Reduced lung-cancer mortality with volume CT screening in a randomized trial. N Engl J Med. 2020;382:503–13. https://doi.org/10.1056/NEJMoa1911793.

    Article  PubMed  Google Scholar 

  37. Han D, Heuvelmans MA, Oudkerk M. Volume versus diameter assessment of small pulmonary nodules in CT lung cancer screening. Transl Lung Cancer Res. 2017;6(1):52–61. https://doi.org/10.21037/tlcr.2017.01.05.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Horeweg N, van der Aalst CM, Vliegenthart R, Zhao Y, Xie X, Scholten ET, et al. Volumetric computed tomography screening for lung cancer: three rounds of the NELSON trial. Eur Respir J. 2013;42(6):1659–67. https://doi.org/10.1183/09031936.00197712.

    Article  PubMed  Google Scholar 

  39. Thawani R, McLane M, Beig N, Ghose S, Prasanna P, Velcheti V, et al. Radiomics and radiogenomics in lung cancer: a review for the clinician. Lung Cancer. 2018;115:34–41. https://doi.org/10.1016/j.lungcan.2017.10.015.

    Article  PubMed  Google Scholar 

  40. Li F, Sone S, Abe H, Macmahon H, Doi K. Malignant versus benign nodules at CT screening for lung cancer: comparison of thin-section CT findings. Radiology. 2004;233(3):793-8:793. https://doi.org/10.1148/radiol.2333031018.

    Article  Google Scholar 

  41. Gould MK, Donington J, Lynch WR, Mazzone PJ, Midthun DE, Naidich DP, et al. Evaluation of individuals with pulmonary nodules: when is it lung cancer? Diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest. 2013;143(5 Suppl):e93S–e120S. https://doi.org/10.1378/chest.12-2351.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Attili AK, Kazerooni EA. Imaging of the solitary pulmonary nodule. In: Medina LS, Blackmore CC, editors. Evidence-based imaging - optimizing imaging in patient care. New York, NY: Springer; 2006. p. 417–40.

    Chapter  Google Scholar 

  43. Ravenel JG, Silvestri G. Imaging of lung cancer. In: Medina LS, Blackmore CC, editors. Evidence-based imaging—optimizing imaging in patient care. New York, NY: Springer; 2006. p. 57–78.

    Chapter  Google Scholar 

  44. de Hoop B, van Ginneken B, Gietema H, Prokop M. Pulmonary perifissural nodules on CT scans: rapid growth is not a predictor of malignancy. Radiology. 2012;265(2):611–6. https://doi.org/10.1148/radiol.12112351.

    Article  PubMed  Google Scholar 

  45. Kastner J, Hossain R, Jeudy J, Dako F, Mehta V, Dalal S, et al. Lung-RADS version 1.0 versus lung-RADS version 1.1: comparison of categories using nodules from the National Lung Screening Trial. Radiology. 2021;300(1):199–206. https://doi.org/10.1148/radiol.2021203704.

    Article  PubMed  Google Scholar 

  46. Heuvelmans MA, Walter JE, Peters RB, Bock GH, Yousaf-Khan U, Aalst CMV, et al. Relationship between nodule count and lung cancer probability in baseline CT lung cancer screening: the NELSON study. Lung Cancer. 2017;113:45–50. https://doi.org/10.1016/j.lungcan.2017.08.023.

    Article  PubMed  Google Scholar 

  47. Walter JE, Heuvelmans MA, Bock GH, Yousaf-Khan U, Groen HJM, Aalst CMV, et al. Characteristics of new solid nodules detected in incidence screening rounds of low-dose CT lung cancer screening: the NELSON study. Thorax. 2018;73(8):741–7. https://doi.org/10.1136/thoraxjnl-2017-211376.

    Article  PubMed  Google Scholar 

  48. Henschke CI, Yankelevitz DF, Mirtcheva R, McGuinness G, McCauley D, Miettinen OS, et al. CT screening for lung cancer: frequency and significance of part-solid and nonsolid nodules. Am J Roentgenol. 2002;178:1053–7.

    Article  Google Scholar 

  49. Callister ME, Baldwin DR, Akram AR, Barnard S, Cane P, Draffan J, et al. British Thoracic Society guidelines for the investigation and management of pulmonary nodules. Thorax. 2015;70 Suppl 2:ii1–ii54. https://doi.org/10.1136/thoraxjnl-2015-207168.

    Article  CAS  PubMed  Google Scholar 

  50. Wahidi MM, Govert JA, Goudar RK, Gould MK, McCrory DC, American College of Chest P. Evidence for the treatment of patients with pulmonary nodules: when is it lung cancer?: ACCP evidence-based clinical practice guidelines (2nd edition). Chest. 2007;132(3 Suppl):94S–107S. https://doi.org/10.1378/chest.07-1352.

    Article  PubMed  Google Scholar 

  51. Gould MK, Smith-Bindman R, Kelly K, Altman DE, Barjaktarevic I, Creekmur B, et al. Methods for the watch the spot trial. A pragmatic trial of more-versus less-intensive strategies for active surveillance of small pulmonary nodules. Ann Am Thorac Soc. 2019;16(12):1567–76. https://doi.org/10.1513/AnnalsATS.201903-268SD.

    Article  PubMed  Google Scholar 

  52. Pinsky PF, Gierada DS, Black W, Munden R, Nath H, Aberle D, et al. Performance of lung-RADS in the National Lung Screening Trial: a retrospective assessment. Ann Intern Med. 2015;162(7):485–91. https://doi.org/10.7326/M14-2086.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Kim HY, Shim YM, Lee KS, Han J, Yi CA, Kim YK. Persistent pulmonary nodular ground-glass opacity at thin-section CT: histopathologic comparisons. Radiology. 2007;245(1):267–75.

    Article  PubMed  Google Scholar 

  54. Nakata M, Sawada S, Saeki H, Takashima S, Mogami H, Teramoto N, et al. Prospective study of thoracoscopic limited resection for ground-glass opacity selected by computed tomography. Ann Thorac Surg. 2003;75(5):1601–5; discussion 5-6. https://doi.org/10.1016/s0003-4975(02)04815-4.

    Article  PubMed  Google Scholar 

  55. Ohtsuka T, Watanabe K, Kaji M, Naruke T, Suemasu K. A clinicopathological study of resected pulmonary nodules with focal pure ground-glass opacity. Eur J Cardiothorac Surg. 2006;30(1):160–3. https://doi.org/10.1016/j.ejcts.2006.03.058.

    Article  PubMed  Google Scholar 

  56. Chen K, Bai J, Reuben A, Zhao H, Kang G, Zhang C, et al. Multiomics analysis reveals distinct Immunogenomic features of lung cancer with ground-glass opacity. Am J Respir Crit Care Med. 2021;204:1180. https://doi.org/10.1164/rccm.202101-0119OC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Henschke C, Yankelevitz DF, Mirtcheva R, McGuinness G, McCauley D, Miettinen OS, et al. CT screening for lung cancer: frequency and significance of part-solid and nonsolid nodules. Am J Roentgenol. 2002;178:1053–7.

    Article  Google Scholar 

  58. Chen K, Nie Y, Park S, Zhang K, Zhang Y, Liu Y, et al. Development and validation of machine learning-based model for the prediction of malignancy in multiple pulmonary nodules: analysis from multicentric cohorts. Clin Cancer Res. 2021;27(8):2255–65. https://doi.org/10.1158/1078-0432.CCR-20-4007.

    Article  PubMed  Google Scholar 

  59. Field JK, Aberle DR, Altorki N, Baldwin DR, Dresler C, Duffy SW, et al. The international association study lung cancer (IASLC) strategic screening advisory committee (SSAC) response to the USPSTF recommendations. J Thorac Oncol. 2014;9:141–3.

    Article  PubMed  Google Scholar 

  60. Jacobson FL, Austin JH, Field JK, Jett JR, Keshavjee S, MacMahon H, et al. Development of the American Association for Thoracic Surgery guidelines for low-dose computed tomography scans to screen for lung cancer in North America: recommendations of the American Association for Thoracic Surgery Task Force for lung cancer screening and surveillance. J Thorac Cardiovasc Surg. 2012;144(1):25–32. https://doi.org/10.1016/j.jtcvs.2012.05.059.

    Article  PubMed  Google Scholar 

  61. Mazzone PJ, Silvestri GA, Souter LH, Caverly TJ, Kanne JP, Katki HA, et al. Screening for lung cancer: CHEST guideline and expert panel report. Chest. 2021;160:e427. https://doi.org/10.1016/j.chest.2021.06.063.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Meza R, Jeon J, Toumazis I, Ten Haaf K, Cao P, Bastani M, et al. Evaluation of the benefits and harms of lung cancer screening with low-dose computed tomography: modeling study for the US Preventive Services Task Force. JAMA. 2021;325(10):988–97. https://doi.org/10.1001/jama.2021.1077.

    Article  PubMed  PubMed Central  Google Scholar 

  63. U.S._Preventive_Services_Task_Force, Krist AH, Davidson KW, Mangione CM, Barry MJ, Cabana M, et al. Screening for lung cancer: US Preventive Services Task Force recommendation statement. JAMA. 2021;325(10):962–70. https://doi.org/10.1001/jama.2021.1117.

    Article  Google Scholar 

  64. Wood DE, Kazerooni EA, Baum SL, Eapen GA, Ettinger DS, Hou L, et al. Lung cancer screening, version 3.2018, NCCN clinical practice guidelines in oncology. J Natl Compr Cancer Netw. 2018;16(4):412–41. https://doi.org/10.6004/jnccn.2018.0020.

    Article  Google Scholar 

  65. Manos D, Seely JM, Taylor J, Borgaonkar J, Roberts HC, Mayo JR. The lung reporting and data system (LU-RADS): a proposal for computed tomography screening. Can Assoc Radiol J. 2014;65(2):121–34. https://doi.org/10.1016/j.carj.2014.03.004.

    Article  PubMed  Google Scholar 

  66. Lin Y, Fu M, Ding R, Inoue K, Jeon CY, Hsu W, et al. Patient adherence to lung-RADS recommended screening intervals in the United States: a systematic review and meta-analysis. J Thorac Oncol. 2021;17:38. https://doi.org/10.1016/j.jtho.2021.09.013.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Swensen SJ, Silverstein MD, Edell ES, Trastek VF, Aughenbaugh GL, Ilstrup DM, et al. Solitary pulmonary nodules: clinical prediction model versus physicians. Mayo Clin Proc. 1999;74(4):319–29. https://doi.org/10.1016/s0025-6196(11)64397-8.

    Article  CAS  PubMed  Google Scholar 

  68. Swensen SJ, Silverstein MD, Ilstrup DM, Schleck CD, Edell ES. The probability of malignancy in solitary pulmonary nodules. Arch Intern Med. 1997;157:849–55.

    Article  CAS  PubMed  Google Scholar 

  69. Herder GJ, van Tinteren H, Golding RP, Kostense PJ, Comans EF, Smit EF, et al. Clinical prediction model to characterize pulmonary nodules: validation and added value of 18F-Fluorodeoxyglucose positron emission tomography. Chest J. 2005;128(4):2490–6.

    Article  Google Scholar 

  70. Soardi GA, Perandini S, Motton M, Montemezzi S. Assessing probability of malignancy in solid solitary pulmonary nodules with a new Bayesian calculator: improving diagnostic accuracy by means of expanded and updated features. Eur Radiol. 2015;25(1):155–62. https://doi.org/10.1007/s00330-014-3396-2.

    Article  CAS  PubMed  Google Scholar 

  71. Gould MK, Ananth L, Barnett PG, Veterans Affairs SCSG. A clinical model to estimate the pretest probability of lung cancer in patients with solitary pulmonary nodules. Chest. 2007;131(2):383–8. https://doi.org/10.1378/chest.06-1261.

    Article  PubMed  Google Scholar 

  72. Schultz EM, Sanders GD, Trotter PR, Patz EF Jr, Silvestri GA, Owens DK, et al. Validation of two models to estimate the probability of malignancy in patients with solitary pulmonary nodules. Thorax. 2008;63(4):335–41. https://doi.org/10.1136/thx.2007.084731.

    Article  CAS  PubMed  Google Scholar 

  73. Sundaram V, Gould MK, Nair VS. A comparison of the PanCan model and lung-RADS to assess cancer probability among people with screening-detected, solid lung nodules. Chest. 2021;159(3):1273–82. https://doi.org/10.1016/j.chest.2020.10.040.

    Article  PubMed  Google Scholar 

  74. Tanner NT, Porter A, Gould MK, Li XJ, Vachani A, Silvestri GA. Physician assessment of pretest probability of malignancy and adherence with guidelines for pulmonary nodule evaluation. Chest. 2017;152(2):263–70. https://doi.org/10.1016/j.chest.2017.01.018.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Baldwin DR, Eaton T, Kolbe J, Christmas T, Milne D, Mercer J, et al. Management of solitary pulmonary nodules: how do thoracic computed tomography and guided fine needle biopsy influence clinical decisions? Thorax. 2002;57:817–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Ost DE, Gould MK. Decision making in patients with pulmonary nodules. Am J Respir Crit Care Med. 2012;185(4):363–72. https://doi.org/10.1164/rccm.201104-0679CI.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Li ZZ, Huang YL, Song HJ, Wang YJ, Huang Y. The value of 18F-FDG-PET/CT in the diagnosis of solitary pulmonary nodules: a meta-analysis. Medicine (Baltimore). 2018;97(12):e0130. https://doi.org/10.1097/MD.0000000000010130.

    Article  PubMed  Google Scholar 

  78. Khalaf M, Abdel-Nabi H, Baker J, Shao Y, Lamonica D, Gona J. Relation between nodule size and 18F-FDG-PET SUV for malignant and benign pulmonary nodules. J Hematol Oncol. 2008;1:13. https://doi.org/10.1186/1756-8722-1-13.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Berger KL, Nicholson SA, Dehdashti F, Siegel BA. FDG PET evaluation of mucinous neoplasms: correlation of FDG uptake with histopathologic features. Am J Roentgenol. 2000;174:1005–8.

    Article  CAS  Google Scholar 

  80. Ambrosini V, Nicolini S, Caroli P, Nanni C, Massaro A, Marzola MC, et al. PET/CT imaging in different types of lung cancer: an overview. Eur J Radiol. 2011;81:988. https://doi.org/10.1016/j.ejrad.2011.03.020.

    Article  PubMed  Google Scholar 

  81. Silvestri GA, Gonzalez AV, Jantz MA, Margolis ML, Gould MK, Tanoue LT, et al. Methods for staging non-small cell lung cancer: diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest. 2013;143(5 Suppl):e211S–e50S. https://doi.org/10.1378/chest.12-2355.

    Article  PubMed  Google Scholar 

  82. Schneider BJ, Daly ME, Kennedy EB, Antonoff MB, Broderick S, Feldman J, et al. Stereotactic body radiotherapy for early-stage non-small-cell lung cancer: American Society of Clinical Oncology endorsement of the American Society for Radiation Oncology evidence-based guideline. J Clin Oncol. 2018;36(7):710–9. https://doi.org/10.1200/JCO.2017.74.9671.

    Article  CAS  PubMed  Google Scholar 

  83. Lokhandwala T, Bittoni MA, Dann RA, D'Souza AO, Johnson M, Nagy RJ, et al. Costs of diagnostic assessment for lung cancer: a medicare claims analysis. Clin Lung Cancer. 2017;18(1):e27–34. https://doi.org/10.1016/j.cllc.2016.07.006.

    Article  PubMed  Google Scholar 

  84. Sears CR, Mazzone PJ. Biomarkers in lung cancer. Clin Chest Med. 2020;41(1):115–27. https://doi.org/10.1016/j.ccm.2019.10.004.

    Article  PubMed  Google Scholar 

  85. Mazzone PJ, Sears CR, Arenberg DA, Gaga M, Gould MK, Massion PP, et al. Evaluating molecular biomarkers for the early detection of lung cancer: when is a biomarker ready for clinical use? An official American Thoracic Society policy statement. Am J Respir Crit Care Med. 2017;196(7):e15–29. https://doi.org/10.1164/rccm.201708-1678ST.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Singh N, Temin S, Baker S Jr, Blanchard E, Brahmer JR, Celano P, et al. Therapy for stage IV non-small-cell lung cancer with driver alterations: ASCO living guideline. J Clin Oncol. 2022;40:JCO2200824. https://doi.org/10.1200/JCO.22.00824.

    Article  CAS  Google Scholar 

  87. Lindeman NI, Cagle PT, Aisner DL, Arcila ME, Beasley MB, Bernicker E, et al. Updated molecular testing guideline for the selection of lung cancer patients for treatment with targeted tyrosine kinase inhibitors. J Thorac Oncol. 2018;13:323. https://doi.org/10.1016/j.jtho.2017.12.001.

    Article  CAS  PubMed  Google Scholar 

  88. National_Comprehensive_Cancer_Network. Non-small cell lung cancer (Version 6.2021). https://www.nccn.org/professionals/physician_gls/pdf/nscl.pdf. Accessed 16 July 2022.

  89. Jett JR, Peek LJ, Fredericks L, Jewell W, Pingleton WW, Robertson JF. Audit of the autoantibody test, EarlyCDT(R)-lung, in 1600 patients: an evaluation of its performance in routine clinical practice. Lung Cancer. 2014;83(1):51–5. https://doi.org/10.1016/j.lungcan.2013.10.008.

    Article  PubMed  Google Scholar 

  90. Sullivan FM, Mair FS, Anderson W, Armory P, Briggs A, Chew C, et al. Earlier diagnosis of lung cancer in a randomised trial of an autoantibody blood test followed by imaging. Eur Respir J. 2021;57(1):2000670. https://doi.org/10.1183/13993003.00670-2020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Silvestri GA, Tanner NT, Kearney P, Vachani A, Massion PP, Porter A, et al. Assessment of plasma proteomics biomarker's ability to distinguish benign from malignant lung nodules: results of the PANOPTIC (pulmonary nodule plasma proteomic classifier) trial. Chest. 2018;154:491. https://doi.org/10.1016/j.chest.2018.02.012.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Silvestri GA, Vachani A, Whitney D, Elashoff M, Porta Smith K, Ferguson JS, et al. A bronchial genomic classifier for the diagnostic evaluation of lung cancer. N Engl J Med. 2015;373(3):243–51. https://doi.org/10.1056/NEJMoa1504601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Lee HJ, Mazzone P, Feller-Kopman D, Yarmus L, Hogarth K, Lofaro LR, et al. Impact of the Percepta genomic classifier on clinical management decisions in a multicenter prospective study. Chest. 2021;159(1):401–12. https://doi.org/10.1016/j.chest.2020.07.067.

    Article  CAS  PubMed  Google Scholar 

  94. Perez-Rogers JF, Gerrein J, Anderlind C, Liu G, Zhang S, Alekseyev Y, et al. Shared gene expression alterations in nasal and bronchial epithelium for lung cancer detection. J Natl Cancer Inst. 2017;109(7):djw327. https://doi.org/10.1093/jnci/djw327.

    Article  CAS  PubMed Central  Google Scholar 

  95. Mazzone PJ, Lamb C, Rieger-Christ KM, Reddy CB, Qu J, Wu S, et al. Early candidate nasal swab classifiers developed using machine learning and whole transcriptome sequencing may improve early lung cancer detection. J Clin Oncol. 2021;39(15_suppl):8551. https://doi.org/10.1200/JCO.2021.39.15_suppl.8551.

    Article  Google Scholar 

  96. Vachani A, Lam S, Massion PP, Brown JK, Beggs M, Fish AL, et al. Development and validation of a risk assessment model for pulmonary nodules using plasma proteins and clinical factors. Chest. 2022;163:966. https://doi.org/10.1016/j.chest.2022.10.038.

    Article  CAS  PubMed  Google Scholar 

  97. Seijo LM, Peled N, Ajona D, Boeri M, Field JK, Sozzi G, et al. Biomarkers in lung cancer screening: achievements, promises, and challenges. J Thorac Oncol. 2019;14(3):343–57. https://doi.org/10.1016/j.jtho.2018.11.023.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine R. Sears .

Editor information

Editors and Affiliations

Ethics declarations

CRS has served as a scientific/medical consultant for Bristol-Myers Squibb Company and received grant funding from Biodesix, the US Department of Veterans Affairs BLR&D (I01-BX005353) and VA CSP (#2005). The contents of this manuscript do not represent the views of the US Department of Veterans Affairs or the US Government. NTT has received grant funding from Biodesix, Nucleix, DELFI, Exact Sciences, and Eon. SV has no COI to declare.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vedachalam, S., Tanner, N.T., Sears, C.R. (2023). Approach to Lung Nodules. In: MacRosty, C.R., Rivera, M.P. (eds) Lung Cancer. Respiratory Medicine. Humana, Cham. https://doi.org/10.1007/978-3-031-38412-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-38412-7_4

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-031-38411-0

  • Online ISBN: 978-3-031-38412-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics