Skip to main content

Redescending M-Estimators Analysis on the Intuitionistic Fuzzy Clustering Algorithm for Skin Lesion Delimitation

  • Chapter
  • First Online:
Data Analytics and Computational Intelligence: Novel Models, Algorithms and Applications

Part of the book series: Studies in Big Data ((SBD,volume 132))

  • 253 Accesses

Abstract

This study has conducted an investigation of the Redescending M-Estimators as alternative to strengthen an Intuitionistic Fuzzy C-Means algorithm against atypical information. In this regard, the objective function was stated taking into account the loss function, while the update expressions for membership matrix and prototypes vector were formulated by a derivative procedure, depending on the influence functions. The evaluated estimators were Huber Skipped Mean, Simple Cut, Tukey Biweight, Hampel’s Three Part Redescending, Andrew’s Sine, German-MacClure, Lorentzian, Asad-Qadir, Insha and Alamgir. The empirical study was performed using the ISIC 2017 dataset in order to make the skin lesion delimitation task, these images had inherent artifacts that were considered as atypical information; the performance was quantified by popular state-of-the-art metrics. The quantitative results show an outstanding performance of the Hampel’s Three Part Redescending with Jaccard Similarity Coefficient\(\,=0.905\pm 0.054\), Dice Measure\(\,=0.910\pm 0.060\), Misclassification Ratio\(\,=\,7.174\pm 0.864\) and Hausdorff Distance\(\,=6.281\pm 0.804\), in contrast all rest estimators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Adegun, A., Viriri, S.: Deep learning techniques for skin lesion analysis and melanoma cancer detection: a survey of state-of-the-art. Artificial Intelligence Review 54, 811–841 (2021)

    Article  Google Scholar 

  2. Alamgir, A.A., Khan, S.A., Khan, D.M., Khalil, U.: A new efficient redescending m-estimator: Alamgir redescending m-estimator. Research Journal of Recent Sciences 2277, 2502 (2013)

    Google Scholar 

  3. Albahli, S., Nida, N., Irtaza, A., Yousaf, M.H., Mahmood, M.T.: Melanoma lesion detection and segmentation using yolov4-darknet and active contour. IEEE Access 8, 198403–198414 (2020)

    Article  Google Scholar 

  4. Ali, A., Qadir, M.F.: A modified m-estimator for the detection of outliers. Pakistan journal of statistics and operation research (2005)

    Google Scholar 

  5. Andrews, D.F., Hampel, F.R.: Robust estimates of location. In: Robust Estimates of Location. Princeton University Press (2015)

    Google Scholar 

  6. Atanassov, K.T., Gargov, G.: Intuitionistic fuzzy logics. Springer (2017)

    Google Scholar 

  7. Beaton, A.E., Tukey, J.W.: The fitting of power series, meaning polynomials, illustrated on band-spectroscopic data. Technometrics 16(2), 147–185 (1974)

    Article  MATH  Google Scholar 

  8. Bhattacharya, A., Freund, Y., Jaiswal, R.: On the k-means/median cost function. Inf. Process. Lett. 177, 106252 (2022)

    Google Scholar 

  9. Bindhu, A., Thanammal, K.: Segmentation of skin cancer using fuzzy u-network via deep learning. Meas.: Sens., 100677 (2023)

    Google Scholar 

  10. Chaira, T.: Fuzzy Set and its Extension: The Intuitionistic Fuzzy Set. Wiley (2019)

    Google Scholar 

  11. Codella, N., Rotemberg, V., Tschandl, P., Celebi, M.E., Dusza, S., Gutman, D., Helba, B., Kalloo, A., Liopyris, K., Marchetti, M., et al.: Skin lesion analysis toward melanoma detection 2018: a challenge hosted by the international skin imaging collaboration (ISIC) (2019). arXiv:1902.03368

  12. Do, T.T., Hoang, T., Pomponiu, V., Zhou, Y., Chen, Z., Cheung, N.M., Koh, D., Tan, A., Tan, S.H.: Accessible melanoma detection using smartphones and mobile image analysis. IEEE Trans. Multimed. 20(10), 2849–2864 (2018)

    Article  Google Scholar 

  13. Durgarao, N., Sudhavani, G.: Diagnosing skin cancer via c-means segmentation with enhanced fuzzy optimization. IET Image Process. 15(10), 2266–2280 (2021)

    Article  Google Scholar 

  14. Frigui, H., Krishnapuram, R.: A robust algorithm for automatic extraction of an unknown number of clusters from noisy data. Pattern Recognit. Lett. 17(12), 1223–1232 (1996)

    Article  MATH  Google Scholar 

  15. Gallegos-Funes, F.J., Ponomaryov, V.I.: Real-time image filtering scheme based on robust estimators in presence of impulsive noise. R.-Time Imaging 10(2), 69–80 (2004)

    Article  Google Scholar 

  16. Gamino-Sánchez, F., Hernández-Gutiérrez, I.V., Rosales-Silva, A.J., Gallegos-Funes, F.J., Mújica-Vargas, D., Ramos-Díaz, E., Carvajal-Gámez, B.E., Kinani, J.M.V.: Block-matching fuzzy c-means clustering algorithm for segmentation of color images degraded with gaussian noise. Eng. Appl. Artif. Intell. 73, 31–49 (2018)

    Article  Google Scholar 

  17. Hasan, M.K., Dahal, L., Samarakoon, P.N., Tushar, F.I., Martí, R.: DSNet: automatic dermoscopic skin lesion segmentation. Comput. Biol. Med. 120, 103738 (2020)

    Google Scholar 

  18. Huber, P.J., Ronchetti, E.M.: The basic types of estimates. Robust Stat., 43–72 (1981)

    Google Scholar 

  19. Ilesanmi, A.E., Chaumrattanakul, U., Makhanov, S.S.: A method for segmentation of tumors in breast ultrasound images using the variant enhanced deep learning. Biocybern. Biomed. Eng. 41(2), 802–818 (2021)

    Article  Google Scholar 

  20. Jain, A.K., Dubes, R.C.: Algorithms for Clustering Data. Prentice-Hall, Inc. (1988)

    Google Scholar 

  21. Jayapriya, K., Jacob, I.J.: Hybrid fully convolutional networks-based skin lesion segmentation and melanoma detection using deep feature. Int. J. Imaging Syst. Technol. 30(2), 348–357 (2020)

    Article  Google Scholar 

  22. Jiang, L., Yang, W.: A modified fuzzy c-means algorithm for segmentation of magnetic resonance images. In: Proceedings of the VIIth Digital Image Computing: Techniques and Applications (2003)

    Google Scholar 

  23. Kersten, P.R.: Fuzzy order statistics and their application to fuzzy clustering. IEEE Trans. Fuzzy Syst. 7(6), 708–712 (1999)

    Article  Google Scholar 

  24. Khachay, M., Khachay, D.: Attainable accuracy guarantee for the k-medians clustering in [0, 1]. Optim. Lett. 13(8), 1837–1853 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  25. Klomsae, A., Auephanwiriyakul, S., Theera-Umpon, N.: A string grammar possibilistic-fuzzy c-medians. Soft Comput. 23(17), 7637–7653 (2019)

    Article  Google Scholar 

  26. Mújica-Vargas, D., Gallegos-Funes, F.J., Rosales-Silva, A.J.: A fuzzy clustering algorithm with spatial robust estimation constraint for noisy color image segmentation. Pattern Recognit. Lett. 34(4), 400–413 (2013)

    Article  Google Scholar 

  27. Mújica-Vargas, D., de Jesús Rubio, J., Kinani, J.M.V., Gallegos-Funes, F.J.: An efficient nonlinear approach for removing fixed-value impulse noise from grayscale images. J. R.-Time Image Process. 14(3), 617–633 (2018)

    Google Scholar 

  28. Mújica-Vargas, D., Rendón-Castro, A., Matuz-Cruz, M., Garcia-Aquino, C.: Multi-core median redescending m-estimator for impulsive denoising in color images. In: Mexican Conference on Pattern Recognition, pp. 261–271. Springer (2021)

    Google Scholar 

  29. Nawaz, M., Mehmood, Z., Nazir, T., Naqvi, R.A., Rehman, A., Iqbal, M., Saba, T.: Skin cancer detection from dermoscopic images using deep learning and fuzzy k-means clustering. Microsc. Res. Tech. 85(1), 339–351 (2022)

    Article  Google Scholar 

  30. Nida, N., Irtaza, A., Javed, A., Yousaf, M.H., Mahmood, M.T.: Melanoma lesion detection and segmentation using deep region based convolutional neural network and fuzzy c-means clustering. Int. J. Med. Inform. 124, 37–48 (2019)

    Article  Google Scholar 

  31. Pander, T., Przybyła, T.: Fuzzy-based algorithm for QRS detection. In: International Workshop on Intuitionistic Fuzzy Sets and Generalized Nets, pp. 202–215. Springer (2019)

    Google Scholar 

  32. Pitas, I., Venetsanopoulos, A.N.: Nonlinear Digital Filters: Principles and Applications, vol. 84. Springer Science & Business Media (2013)

    Google Scholar 

  33. Raju, D.N., Shanmugasundaram, H., Sasikumar, R.: Fuzzy segmentation and black widow-based optimal SVM for skin disease classification. Med. Biol. Eng. Comput. 59(10), 2019–2035 (2021)

    Article  Google Scholar 

  34. Rupesh, Y.K., Behnam, P., Pandla, G.R., Miryala, M., Bojnordi, M.N.: Accelerating \(k\)-medians clustering using a novel 4T-4R RRAM cell. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 26(12), 2709–2722 (2018)

    Google Scholar 

  35. Szmidt, E.: Distances and Similarities in Intuitionistic Fuzzy Sets, vol. 307. Springer (2014)

    Google Scholar 

  36. Tukey, J.W.: A survey of sampling from contaminated distributions. In: Contributions to Probability and Statistics, pp. 448–485 (1960)

    Google Scholar 

  37. Ullah, I., Qadir, M.F., Ali, A.: Insha’s redescending m-estimator for robust regression: a comparative study. Pak. J. Stat. Oper. Res., 135–144 (2006)

    Google Scholar 

  38. Wang, X., Jiang, X., Ding, H., Zhao, Y., Liu, J.: Knowledge-aware deep framework for collaborative skin lesion segmentation and melanoma recognition. Pattern Recognit. 120, 108075 (2021)

    Google Scholar 

  39. Xu, Z.: Intuitionistic fuzzy aggregation operators. IEEE Trans. Fuzzy Syst. 15(6), 1179–1187 (2007)

    Article  Google Scholar 

  40. Zhang, Z., Zhang, J., Zhu, L.: A parameterized approximation algorithm for the chromatic k-median problem. IEEE Access 9, 31678–31683 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank to CONACYT, as well as TecNM-CENIDET for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dante Mújica-Vargas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mújica-Vargas, D., Carvajal-Gámez, B., Martínez-Rebollar, A., Rubio, J.d.J. (2023). Redescending M-Estimators Analysis on the Intuitionistic Fuzzy Clustering Algorithm for Skin Lesion Delimitation. In: Rivera, G., Cruz-Reyes, L., Dorronsoro, B., Rosete, A. (eds) Data Analytics and Computational Intelligence: Novel Models, Algorithms and Applications. Studies in Big Data, vol 132. Springer, Cham. https://doi.org/10.1007/978-3-031-38325-0_6

Download citation

Publish with us

Policies and ethics