Skip to main content

Abstract

Agent-based simulation is a powerful technique used for simulating real-life situations. This method involves simulating individual agents and their interactions with each other and the environment. Several platforms, such as GAMA and MASON, are available for developing agent-based simulations. In this chapter, we present a case study that showcases the versatility of agent-based simulation across different domains. Through various scenarios, we demonstrate that this approach can be successfully employed in diverse areas, such as traffic modeling, understanding the behavior of drifting objects, and teaching the operation of a sugar mill boiler. These simulations can be built from the scratch or using development platforms, providing a unique approach to modeling complex systems. By using agent-based simulations, researchers can test different scenarios and understand how agents interact within a system, leading to valuable insights for decision-making and problem-solving.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abar, S., Theodoropoulos, G.K., Lemarinier, P., O’Hare, G.M.: Agent-based modelling and simulation tools: a review of the state-of-art software. Comput. Sci. Rev. 24, 13–33 (2017). https://doi.org/10.1016/j.cosrev.2017.03.001

  2. Al-Fraihat, D., Joy, M., Masa’deh, R., Sinclair, J.: Evaluating e-learning systems success: an empirical study. Comput. Hum. Behav. 102, 67–86 (2020). https://doi.org/10.1016/j.chb.2019.08.004

  3. Bigbee, A., Cioffi-Revilla, C., Luke, S.: Replication of sugarscape using mason. In: Terano, T., Kita, H., Deguchi, H., Kijima, K. (eds.) Agent-Based Approaches in Economic and Social Complex Systems IV, pp. 183–190. Springer Japan, Tokyo (2007). https://doi.org/10.1007/978-4-431-71307-4_20

  4. Biljecki, F., Ito, K.: Street view imagery in urban analytics and GIS: a review. Landsc. Urban Plan. 215, 104217 (2021). https://doi.org/10.1016/j.landurbplan.2021.104217

  5. Blanken, H., Valeo, C., Hannah, C., Khan, U.T., Juhász, T.: A fuzzy-based framework for assessing uncertainty in drift prediction using observed currents and winds. Front. Marine Sci. 8 (2021). https://doi.org/10.3389/fmars.2021.618094

  6. Borjigin, S.G., He, Q., Niemeier, D.A.: Covid-19 transmission in U.S. transit buses: a scenario-based approach with agent-based simulation modeling (ABSM). Commun. Transp. Res. 3 (2023). https://doi.org/10.1016/j.commtr.2023.100090

  7. Chen, H.M., Kazman, R., Perry, O.: From software architecture analysis to service engineering: an empirical study of methodology development for enterprise SOA implementation. IEEE Trans. Serv. Comput. 3(2), 145–160 (2010). https://doi.org/10.1109/TSC.2010.21

  8. Choi, J.W., Kwon, J.I., Heo, K.Y., Park, K.S., Choi, J.Y.: Accuracy improvement of particle-tracking simulation considering wind speed using various drift objects. J. Coast. Res. 85, 901–905 (2018). https://doi.org/10.2112/SI85-181.1

  9. Cioffi-Revilla, C., Rouleau, M.: Mason rebeland: an agent-based model of politics, environment, and insurgency. Int. Stud. Rev. 12(1), 31–52 (2010)

    Article  Google Scholar 

  10. Cordasco, G., Mancuso, A., Milone, F., Spagnuolo, C.: Communication strategies in distributed agent-based simulations: the experience with d-mason. In: Mey, D., Alexander, M., Bientinesi, P., Cannataro, M., Clauss, C., Costan, A., Kecskemeti, G., Morin, C., Ricci, L., Sahuquillo, J., Schulz, M., Scarano, V., Scott, S.L., Weidendorfer, J. (eds.) Euro-Par 2013: parallel Processing Workshops, pp. 533–543. Springer, Berlin, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54420-0_52

  11. Cordasco, G., Scarano, V., Spagnuolo, C.: Distributed mason: a scalable distributed multi-agent simulation environment. Simul. Modell. Pract. Theory 89, 15–34 (2018). https://doi.org/10.1016/j.simpat.2018.09.002

  12. Cortés Falcón, M., Cornes Izquierdo, Y., Alomá Vicente, I., González Suárez, E.: Evaluación del sistema energético en el central azucarero quintín bandera. Centro Azúcar 46(3), 66–78 (2019)

    Google Scholar 

  13. de las Naciones Unidas contra la Droga y el Delito (UNODC), O.: Informe mundial sobre las drogas 2010. Tech. rep., United Nations (2010). https://www.unodc.org/-documents/-data-and-analysis-/WDR2010/-Informe-_Mundial_-sobre_las_-Drogas_2010-.pdf. Accessed 05 Oct. 2022

    Google Scholar 

  14. de las Naciones Unidas contra la Droga y el Delito (UNODC), O.: Cocaine from south america to the united states. Tech. rep., United Nations (2012). https://www.unodc.org-/documents/-toc/Reports/-TOCTASouthAmerica/-English/TOCTA-_CACaribb_-cocaine_SAmerica-_US.pdf. Accessed 05 Oct. 2022

    Google Scholar 

  15. de Tránsito, D.N.: A partir del viernes 9 funcionarán semáforos en la rotonda de la ciudad deportiva (2015). http://www.cubadebate.cu/noticias/2015/10/08/a-partir-del-viernes-9-funcionaran-semaforos-en-la-rotonda-de-la-ciudad-deportiva/. Accessed 05 Oct. 2022

  16. Dewi, C., Chen, R.C.: Integrating real-time weather forecasts data using open weather map and twitter. Int. J. Inf. Technol. Bus. 1(2), 48–52 (2019)

    Google Scholar 

  17. Drogoul, A., Amouroux, E., Caillou, P., Gaudou, B., Grignard, A., Marilleau, N., Taillandier, P., Vavasseur, M., Vo, D.A., Zucker, J.D.: Gama: a spatially explicit, multi-level, agent-based modeling and simulation platform. In: Demazeau, Y., Ishida, T., Corchado, J.M., Bajo, J. (eds.) Advances on Practical Applications of Agents and Multi-agent Systems, pp. 271–274. Springer, Berlin, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38073-0_25

  18. Dunham, J.B.: An agent-based spatially explicit epidemiological model in mason. J. Artif. Soc. Soc. Simul. 9(1), 3 (2005)

    MathSciNet  Google Scholar 

  19. Ferrari, A., Ter Beek, M.H.: Formal methods in railways: a systematic mapping study. ACM Comput. Surv. 55(4) (2023). https://doi.org/10.1145/3520480

  20. Gaffney, K.P., Prammer, M., Brasfield, L., Hipp, D.R., Kennedy, D., Patel, J.M.: Sqlite: past, present, and future. Proc. VLDB Endow. 15(12), 3535–3547 (2022). https://doi.org/10.14778/3554821.3554842

  21. González Mancha, J.J., Guerrero, M.S., Velez Chong, A.G., González Barbosa, J.J., Gómez, C., Cruz-Reyes, L., Rivera, G.: A mobile application for helping urban public transport and its logistics. In: Handbook of Research on Military, Aeronautical, and Maritime Logistics and Operations, pp. 385–406. IGI Global (2016). https://doi.org/10.4018/978-1-4666-9779-9.ch020

  22. Hackett, B., Breivik, Ø., Wettre, C.: Forecasting the drift of objects and substances in the ocean. In: Chassignet, E.P., Verron, J. (eds.) Ocean Weather Forecasting: an Integrated View of Oceanography, pp. 507–523. Springer Netherlands, Dordrecht (2006). https://doi.org/10.1007/1-4020-4028-8_23

  23. of Health, W.T.S.D.: Global status report on road safety 2018. Tech. rep., World Health Organization, New York, NY, United States (2018). https://www.who.int/publications/i/item/9789241565684. Accessed 05 Oct. 2022

  24. Hillier, F., Lieberman, G.: Introduction to Operations Research, eleventh McGraw-Hill, New York, NY, United States (2020)

    MATH  Google Scholar 

  25. Holguin, L., Ochoa-Zezzatti, A., Larios, V.M., Cossio, E., Maciel, R., Rivera, G.: Small steps towards a smart city: mobile application that provides options for the use of public transport in Juarez city. In: 2019 IEEE International Smart Cities Conference (ISC2), pp. 100–105. IEEE (2019). https://doi.org/10.1109/ISC246665.2019.9071728

  26. Ibili, F., Owolabi, A.O., Ackaah, W., Massaquoi, A.B.: Statistical modelling for urban roads traffic noise levels. Sci. Afr. 15, e01131 (2022). https://doi.org/10.1016/j.sciaf.2022.e01131

  27. Karagiannis, P., Togias, T., Michalos, G., Makris, S.: Operators training using simulation and vr technology. Procedia CIRP (8th CIRP Global Web Conference—Flexible Mass Customisation (CIRPe 2020)) 96, 290–294 (2021). https://doi.org/10.1016/j.procir.2021.01.089

  28. Karakikes, I., Nathanail, E., Savrasovs, M.: Techniques for smart urban logistics solutions’ simulation: a systematic review. RelStat 68, 551–561 (2019). https://doi.org/10.1007/978-3-030-12450-2_53

  29. Kim, H., Cho, C.Y., Hong, S.W.: Impact of agent-based simulation on novice architects’ workplace design exploration and trade-offs. Autom. Constr. 145, 104635 (2023). https://doi.org/10.1016/j.autcon.2022.104635

  30. Law, A.M., Kelton, W.D.: Simulation Modelling and Analysis, 5th edn. McGraw-Hill, Penn Plaza, New York, USA (2015)

    Google Scholar 

  31. Liu, Y., Shen, W., Zhang, C., Sun, X.: Agent-based simulation and optimization of hybrid flow shop considering multi-skilled workers and fatigue factors. Robot. Comput. Integr. Manuf. 80 (2023). https://doi.org/10.1016/j.rcim.2022.102478

  32. Luke, S., Simon, R., Crooks, A., Wang, H., Wei, E., Freelan, D., Spagnuolo, C., Scarano, V., Cordasco, G., Cioffi-Revilla, C.: The mason simulation toolkit: past, present, and future. In: Davidsson, P., Verhagen, H. (eds.) Multi-agent-Based Simulation XIX, pp. 75–86. Springer International Publishing, Cham (2019). https://doi.org/10.1007/978-3-030-22270-3_6

  33. Mavrin, V., Magdin, K., Shepelev, V., Danilov, I.: Reduction of environmental impact from road transport using analysis and simulation methods. Transp. Res. Procedia 50, 451–457 (2020). https://doi.org/10.1016/j.trpro.2020.10.053. XIV International Conference on Organization and Traffic Safety Management in Large Cities (OTS-2020)

  34. Moon, Y.B.: Simulation modelling for sustainability: a review of the literature. Int. J. Sustain. Eng. 10(1), 2–19 (2017). https://doi.org/10.1080/19397038.2016.1220990

  35. Mooney, P., Minghini, M., et al.: A review of openstreetmap data. In: Mapping and the Citizen Sensor, pp. 37–59 (2017)

    Google Scholar 

  36. Moor, B.S.C.: A reliable high efficiency sugar mill boiler. In: Proceeding of the South African Sugar Technologists’ Association, vol. 59, p. 118. Citeseer (1985)

    Google Scholar 

  37. Moreno, A., Bravo, D., Moreno, M.: Herramienta de simulación para evaluar configuraciones semafóricas. Revista Cubana de Transformación Digital 2(1), 102–114 (2021)

    Google Scholar 

  38. Morita, R., Nojima, K., Chida, Y., Arikawa, T.: Tsunami-induced drift motion and numerical simulation using various models. J. Disas. Res. 17(4), 532–540 (2022). https://doi.org/10.20965/jdr.2022.p0532

  39. Nguyen, J., Powers, S.T., Urquhart, N., Farrenkopf, T., Guckert, M.: An overview of agent-based traffic simulators. Transp. Res. Interdiscip. Perspect. 12, 100486 (2021). https://doi.org/10.1016/j.trip.2021.100486

  40. Niu, A., Ma, H., Zhang, S., Zhu, X., Deng, J., Luo, Y.: The effectiveness of simulation-based training on the competency of military nurses: A systematic review. Nurse Educ. Today 119, 105536 (2022). https://doi.org/10.1016/j.nedt.2022.105536

  41. Ochoa-Zezzatti, A., Carbajal, U., Castillo, O., Mejía, J., Rivera, G., Gonzalez, S.: Development of a java library to solve the school bus routing problem. In: Banat, M.M., Paiva, S. (eds.) Smart Technologies for Smart Cities, pp. 175–196. Springer International Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-39986-3_9

  42. Pliatsios, D., Sarigiannidis, P., Lagkas, T., Sarigiannidis, A.G.: A survey on SCADA systems: Secure protocols, incidents, threats and tactics. IEEE Commun. Surv. Tutor. 22(3), 1942–1976 (2020). https://doi.org/10.1109/COMST.2020.2987688

  43. Ponta, L., Puliga, G., Lazzarotti, V., Manzini, R., Cincotti, S.: To copatent or not to copatent: An agent-based model for firms facing this dilemma. Europ. J. Oper. Res. 306(3), 1349–1363 (2023). https://doi.org/10.1016/j.ejor.2022.07.003

  44. Qadri, S.S.S.M., Gökçe, M.A., Öner, E.: State-of-art review of traffic signal control methods: challenges and opportunities. Europ. Transp. Res. Rev. 12(55), 1–23 (2020). https://doi.org/10.1186/s12544-020-00439-1

  45. Reinaldo, O.F.: Rotondas, semáforos y comunicación por descongestionar (2015). http://www.cubadebate.cu/opinion/2015/12/23/rotondas-semaforos-y-comunicacion-por-descongestionar/. Accessed 05 Oct. 2022

  46. Schneckenberg, D., Benitez, J., Klos, C., Velamuri, V.K., Spieth, P.: Value creation and appropriation of software vendors: a digital innovation model for cloud computing. Inf. Manag. 58(4), 103463 (2021). https://doi.org/10.1016/j.im.2021.103463

  47. Seelke, C., Sun Wyler, L., Beittel, J., Sullivan, M.: Latin America and the Caribbean: Illicit drug trafficking and U.S. counterdrug programs. Tech. rep., Congressional Research Service (2011). https://sgp.fas.org/crs/row/R41215.pdf. Accessed 05 Oct. 2022

  48. Shaharuddin, R.A., Misro, M.Y.: Traffic simulation using agent based modelling. In: AIP Conference Proceedings, vol. 2423, p. 020035. AIP Publishing LLC (2021). https://doi.org/10.1063/5.0075719

  49. Sullivan, K., Coletti, M., Luke, S.: Geomason: geospatial support for mason. Tech. rep., Department of Computer Science, George Mason University (2010). https://cs.gmu.edu/media/techreports/GMU-CS-TR-2010-16.pdf. Accessed 05 Oct. 2022

  50. Taillandier, P., Gaudou, B., Grignard, A., Huynh, Q.N., Marilleau, N., Caillou, P., Philippon, D., Drogoul, A.: Building, composing and experimenting complex spatial models with the Gama platform. GeoInformatica 23, 299–322 (2019). https://doi.org/10.1007/s10707-018-00339-6

  51. Treglia, M.L.: An introduction to GIS using QGIS (v. 3.0). Tech. rep., The Nature Conservancy in New York (2011). https://-mltconsecol.-github.io/-QGIS–Tutorial/-QGIS-Tutorial/-Treglia_QGIS_Tutorial_3_0.pdf. . Accessed 05 Oct. 2022

    Google Scholar 

  52. Wan, R., Zhang, T., Zhou, C., Zhao, F., Wang, W.: Experimental and numerical investigations of hydrodynamic response of biodegradable drifting fish aggregating devices (fads) in waves. Ocean Eng. 244 (2022). https://doi.org/10.1016/j.oceaneng.2021.110436

  53. Wang, H., Wei, E., Simon, R., Luke, S., Crooks, A., Freelan, D., Spagnuolo, C.: Scalability in the mason multi-agent simulation system. In: 2018 IEEE/ACM 22nd International Symposium on Distributed Simulation and Real Time Applications (DS-RT), pp. 1–10 (2018). https://doi.org/10.1109/DISTRA.2018.8601006

  54. zheng WANG, S., bing NIE, H., jian SHI, C.: A drifting trajectory prediction model based on object shape and stochastic motion features. J. Hydrodyn. Ser. B 26(6), 951–959 (2015). https://doi.org/10.1016/S1001-6058(14)60104-9

  55. Windmill, E.: Flutter in Action. Manning, Shelter Island, NY (2019)

    Google Scholar 

  56. Winkler-Schwartz, A., Bissonnette, V., Mirchi, N., Ponnudurai, N., Yilmaz, R., Ledwos, N., Siyar, S., Azarnoush, H., Karlik, B., Del Maestro, R.F.: Artificial intelligence in medical education: best practices using machine learning to assess surgical expertise in virtual reality simulation. J. Surg. Educ. 76(6), 1681–1690 (2019). https://doi.org/10.1016/j.jsurg.2019.05.015

  57. Wooldridge, M.: An Introduction to MultiAgente Systems, 2nd edn. Wiley, West Susset, United Kingdom (2009)

    Google Scholar 

  58. Yang, J., Luo, P., Wang, Z., Shen, J.: Simulation training of laparoscopic pancreaticojejunostomy and stepwise training program on a 3d-printed model. Int. J. Surg. 107, 106958 (2022). https://doi.org/10.1016/j.ijsu.2022.106958

  59. Yin, R.K.: Case Study Research and Applications: design and Methods, sixth edn. SAGE Publications, Inc., Thousand Oaks, California (2018)

    Google Scholar 

  60. Zalat, M.M., Hamed, M.S., Bolbol, S.A.: The experiences, challenges, and acceptance of e-learning as a tool for teaching during the covid-19 pandemic among university medical staff. PloS one 16(3), e0248758 (2021). https://doi.org/10.1371/journal.pone.0248758

  61. Zhao, M., Zhang, T., Zhang, J.: Consciousness neural network for path tracking control of floating objects at sea. In: Proceedings—2022 International Conference on Machine Learning, Cloud Computing and Intelligent Mining, MLCCIM 2022, p. 391–397 (2022). https://doi.org/10.1109/MLCCIM55934.2022.00073

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mailyn Moreno-Espino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Moreno-Espino, M., Moreno-Román, A.C., López-González, A., Benitez-Bosque, R.R., Porras, C., Hadfeg-Fernández, Y. (2023). Agent-Based Simulation: Several Scenarios. In: Rivera, G., Cruz-Reyes, L., Dorronsoro, B., Rosete, A. (eds) Data Analytics and Computational Intelligence: Novel Models, Algorithms and Applications. Studies in Big Data, vol 132. Springer, Cham. https://doi.org/10.1007/978-3-031-38325-0_14

Download citation

Publish with us

Policies and ethics