Skip to main content

Fuzzified Case-Based Reasoning Blockchain Framework for Predictive Maintenance in Industry 4.0

  • Chapter
  • First Online:
Data Analytics and Computational Intelligence: Novel Models, Algorithms and Applications

Part of the book series: Studies in Big Data ((SBD,volume 132))

Abstract

Production losses can influence minor and big businesses and frequently result from unpredicted glitches that arise during what should be a repetitive maintenance procedure. However, procedures can be taken to curtail losses through appropriate prediction and planning. Smart businesses or Industry 4.0 are data-driven and largely count on computational intelligence for the generation, collection, transportation, sharing, storing, and transforming of data into value. In light of the incessant development of computational intelligence, several measures to reduce production losses as related to maintenance cost reduction have also been detected progressively but not totally covered because these measures have been rapidly adopted without prior consideration, posing a challenge in production because the means of predicting the effect of such adoption may not be foreseen. Hence, leading to production loss. This has led to the motive for developing a fuzzified case-based reasoning blockchain framework for predictive maintenance in Industry 4.0. The fuzzified case-based reasoning blockchain (FCBRB) framework is a convincing model that permits the use of fuzzy-based rules to ease the uncertainty in case similarity knowledge and the establishment of a blockchain for case knowledge authentication and authorization. The method implemented in this study proposed the use of fuzzy logic, blockchain, and case-based reasoning (CBR) for up-to-the-minute reasoning tasks in the classification of suspected cases of production loss before and after routine maintenance. The method has been implemented in a prototype web application written in HTML and JavaScript with a K-NN machine-learning algorithm. The findings indicated that the maintenance case knowledge can be shared securely and efficiently for predictive maintenance in Industry 4.0.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gudivada, V.: Data analytics: fundamentals. In: Chowdhury, M., Apon, A., Dey, K.: (eds.) Data Analytics for Intelligent Transportation Systems, pp. 31–67. Elsevier (2017). https://doi.org/10.1016/b978-0-12-809715-1.00002-x

  2. Cisneros, L., Rivera, G., Florencia, R., Sánchez-Solís, J.P.: Fuzzy optimisation for business analytics: a bibliometric analysis. J. Intell. Fuzzy Syst. 44(2), 2615–2630 (2023). https://doi.org/10.3233/JIFS-221573

    Article  Google Scholar 

  3. Siddique, N., Adeli, H.: Computational Intelligence: Synergies of Fuzzy Logic, Neural Networks and Evolutionary Computing. John Wiley & Sons. (2013). https://doi.org/10.1002/9781118534823

    Article  Google Scholar 

  4. Pedrycz, W., Martínez, L., Espin-Andrade, R. A., Rivera, G., Gómez, J. M. (eds.).: Preface. In Computational Intelligence for Business Analytics, pp. v–vi. Springer. (2021). https://doi.org/10.1007/978-3-030-73819-8

  5. Susto, G., Schirru, A., Pampuri, S., McLoone, S., Beghi, A.: Machine learning for predictive maintenance: a multiple classifier approach. IEEE Trans. Ind. Inf. 11(3), 812–820 (2015). https://doi.org/10.1109/tii.2014.2349359

    Article  Google Scholar 

  6. Barga, R., Fontama, V., Tok, W., C.-Cordon, L.: Predictive Analytics with Microsoft Azure Machine Learning, 2nd edn. Apress Media (2015). https://doi.org/10.1007/978-1-4842-1200-4

  7. Douek-Pinkovich, Y., Ben-Gal, I., Raviv, T.: The stochastic test collection problem: models, exact and heuristic solution approaches. Eur. J. Oper. Res. 299(2022), 945–959 (2022). https://doi.org/10.1016/j.ejor.2021.12.043

    Article  MathSciNet  MATH  Google Scholar 

  8. Vilela, M.J., Oluyemi, G.F.: Fuzzy Logic. Springer, Value of Information and Flexibility (2022)

    Google Scholar 

  9. Arji, G., Ahmadi, H., Nilashi, M., Rashid, T.A., Ahmed, O.H., Aljojo, N., Zainol, A.: Fuzzy logic approach for infectious disease diagnosis: a methodical evaluation, literature and classification. Biocybern. Biomed. Eng. 39(4), 937–955 (2019). https://doi.org/10.1016/j.bbe.2019.09.004

    Article  Google Scholar 

  10. Bouteraa, Y., Abdallah, I. B., ElMogy, A., Ibrahim, A., Tariq, U., Ahmad, T.: A fuzzy logic architecture for rehabilitation robotic systems. Int. J. Comput. Commun. Contr. 15(4) (2020). https://doi.org/10.15837/ijccc.2020.4.3814

  11. Jafari, R., Razvarz, S., Gegov, A., Razvarz, S.: Implementation of fuzzy logic and neuro-fuzzy in industry. Int. J. Math. Game Theory Algebra 30(1), 313–333 (2021)

    MATH  Google Scholar 

  12. Okudan, O., Budayan, C., Dikmen, I.: A knowledge-based risk management tool for construction projects using case-based reasoning. Expert Syst. Appl. 173(02), 114776 (2021). https://doi.org/10.1016/j.eswa.2021.114776

    Article  Google Scholar 

  13. Bannour, W., Maalel, A., Ben Ghezala, H.H.: Emergency management case-based reasoning systems: a survey of recent developments. J. Exp. Theor. Artif. Intell. 1(24). (2021). https://doi.org/10.1080/0952813x.2021.195265

  14. Kolodner, J.: An introduction to case-based reasoning. Artif. Intell. Rev. 6(1), 3–34 (1992)

    Article  Google Scholar 

  15. Khosravani, M.R., Nasiri, S.: Injection moulding manufacturing process: review of case-based reasoning applications. J. Intell. Manuf. (2019). https://doi.org/10.1007/s10845-019-01481-0

    Article  Google Scholar 

  16. Jianping, S., Hantao, C., Biao, G., Zhaoping, T.: Li Xiaopeng demand prediction of railway emergency resources based on case-based reasoning. J. Adv. Transp. (2021). https://doi.org/10.1155/2021/6666631

    Article  Google Scholar 

  17. Ayhan, B.U., Tokdemir, O.B.: Safety assessment in megaprojects using artificial intelligence. Saf. Sci. 118(10), 273–287 (2019). https://doi.org/10.1016/j.ssci.2019.05.027

    Article  Google Scholar 

  18. Euromoney Institutional (2022). What is Blockchain? https://www.euromoney.com/learning/blockchain-explained/what-is-blockchain

  19. Lai, N.Y.G., Wong, K.H., Halim, D., Lu, J., Kang, H.S.: Industry 4.0 enhanced lean manufacturing. In: Paper presented at the 8th International Conference on Industrial Technology and Management (ICITM) India. (2019, March). https://doi.org/10.1109/icitm.2019.8710669

  20. Hassoun, A., Aït-Kaddour, A., Abu-Mahfouz, A.M., Rathod, N.B., Bader, F., Barba, F.J., Regenstein, J.: The fourth industrial revolution in the food industry—Part I: industry 4.0 technologies. Crit. Rev. Food Sci. Nutrit. 1(17) (2022). https://doi.org/10.1080/10408398.2022.2034735

  21. King, P.J., Mamdani, E.H.: The application of fuzzy control systems to industrial processes. Automatica 13(3), 235–242 (1977). https://doi.org/10.1016/0005-1098(77)90050-4

    Article  Google Scholar 

  22. Precup, R.E., Hellendoorn, H.: A survey on industrial applications of fuzzy control. Comput. Ind. 62(3), 213–226 (2011). https://doi.org/10.1016/j.compind.2010.10.001

    Article  Google Scholar 

  23. Azadegan, A., Porobic, L., Ghazinoory, S., Samouei, P., Saman Kheirkhah, A.: Fuzzy logic in manufacturing: a review of literature and a specialized application. Int. J. Prod. Econ. 132(2), 258–270 (2011). https://doi.org/10.1016/j.ijpe.2011.04.018

  24. Lugli, A.B., Neto, E.R., Henriques, J.P.C., Hervas, M.D.A., Santos, M.M.D., Justo, J.F.: Industrial application control with fuzzy systems. Int. J. Innov. Comput., Inf. Contr. 12(2), 665–676 (2016)

    Google Scholar 

  25. Medić, N., Anišić, Z., Lalić, B., Marjanović, U., Brezocnik, M.: Hybrid fuzzy multi-attribute decision making model for evaluation of advanced digital technologies in manufacturing: industry 4.0 perspective. Adv. Prod. Eng. Manag. 14(4), 483–493 (2019). https://doi.org/10.14743/apem2019.4.343

  26. Tashtoush, T., Alazzam, A., Rodan, A.: Utilizing fuzzy logic controller in manufacturing facilities design: machine and operator allocation. Cogent Eng. 7(1). (2020). https://doi.org/10.1080/23311916.2020.1771820

  27. Hilletofth, P., Sequeira, M., Tate, W.: Fuzzy-logic-based support tools for initial screening of manufacturing reshoring decisions. Ind. Manag. Data Syst. 121(5), 965–992 (2021). https://doi.org/10.1108/IMDS-05-2020-0290

    Article  Google Scholar 

  28. Caiado, R.G.G., Scavarda, L.F., Gavião, L.O., Ivson, P., Nascimento, D.L. de M., Garza-Reyes, J.A.: A fuzzy rule-based industry 4.0 maturity model for operations and supply chain management. (November, 2019) Int. J. Prod. Econ. 231 (2021). https://doi.org/10.1016/j.ijpe.2020.107883

  29. Righi, R.D.R., Alberti, A.M., Singh, M.: Blockchain Technology for Industry 4.0: Secure, Decentralized, Distributed and Trusted Industry Environment (2020). https://doi.org/10.1007/978-981-15-1137-0

  30. Singh, M.: Blockchain technology for data management in industry 4.0. In: Blockchain Technology for Industry 4.0, pp. 59–72. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-1137-0_3

  31. Zupan, N., Kasinathan, P., Cuellar, J., Sauer, M.: Secure smart contract generation based on petri nets. In: Blockchain Technology for Industry 4.0, pp. 73–98. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-1137-0_4

  32. Ferreira, C.M.S., Oliveira, R.A.R., Silva, J.S., Cunha Cavalcanti, C.F.M.D.: Blockchain for machine-to-machine interaction in industry 4.0. In: Blockchain Technology for Industry 4.0, pp. 99–116. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-1137-0_5

  33. Javaid, M., Haleem, A., Pratap Singh, R., Khan, S., Suman, R.: Blockchain technology applications for industry 4.0: a literature-based review. Blockchain: Res. Appl. 2(4), 100027 (2021). https://doi.org/10.1016/j.bcra.2021.100027

  34. Schwab, K.: The fourth industrial revolution: what it means and how to respond. World Economic Forum 1–7 (2016)

    Google Scholar 

  35. Hernández-Nieves, E., Hernández, G., Gil-González, A.B., Rodríguez-González, S., Corchado, J.M.: CEBRA: a case-based reasoning application to recommend banking products. Eng. Appl. Artif. Intell. 104(May), 104327 (2021). https://doi.org/10.1016/j.engappai.2021.104327

    Article  Google Scholar 

  36. Guo, S., Yang, Q., Liu, X.: Combination case-based reasoning and clustering method for similarity analysis of production manufacturing process. In: A paper presented at International Conference on Industrial Informatics—Computing Technology, Intelligent Technology, Industrial Information Integration, Wuhan, China (2015). https://doi.org/10.1109/iciicii.2015.109

  37. Mohammed, M.M., Ali, M.A., Lotfi, H.: An ontology-enabled case-based reasoning decision support system for manufacturing process selection. Adv. Mater. Sci. Eng. (2019). https://doi.org/10.1155/2019/2505183

    Article  Google Scholar 

  38. Mohammad, R.K., Sara, N.: Injection moulding manufacturing process: review of case-based reasoning applications. J. Intell. Manuf., Springer 31(4), 847–864 (2020). https://doi.org/10.1007/s10845-019-01481-0

    Article  Google Scholar 

  39. Sascha, L., Valentin, P, Ute, S.: A case-based reasoning approach for a decision support system in manufacturing. In: A paper presented at 34th International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems, Kuala Lumpur, Malaysia. (July, 2021). https://doi.org/10.1007/978-3-030-79463-7_22

  40. Hoffman, M.L.: Online Maintenance Prioritization via Monte Carlo Tree Search and Case-based Reasoning in Complex Manufacturing Systems. (Doctoral Thesis). The Pennsylvania State University, University Park, Pennsylvania. https://doi.org/10.1115/1.4053408

  41. Neykov, N., Stefanova, S.: Case-based reasoning application for parking guidance systems. IFAC-PapersOnLine 55(11), 150–154 (2021) (2022). https://doi.org/10.1016/j.ifacol.2022.08.064

  42. Okudan, O., Budayan, C., Dikmen, I.: A knowledge-based risk management tool for construction projects using case-based reasoning. Expert Syst. Appl. 173(February), 114776 (2021). https://doi.org/10.1016/j.eswa.2021.114776

    Article  Google Scholar 

  43. Duan, J., Jiao, F.: Novel case-based reasoning system for public health emergencies. Risk Manag. Healthc. Policy 14, 541–553 (2021). https://doi.org/10.2147/RMHP.S291441

    Article  Google Scholar 

  44. Khosravani, M.R., Nasiri, S., Weinberg, K.: Application of case-based reasoning in a fault detection system on production of drippers. Appl. Soft Comput. J. 75, 227–232 (2019). https://doi.org/10.1016/j.asoc.2018.11.017

    Article  Google Scholar 

  45. Schoenborn, J.M., Althoff, K.-D.: Prototype application to detect malicious network traffic with case-based reasoning and SEASALT. (2021). http://mycbr-project.org/

  46. Dorodnykh, N., Nikolaychuk, O., Pestova, J., Yurin, A.: Forest fire risk forecasting with the aid of case-based reasoning. Appl. Sci. (Switzerland) 12(17) (2022). https://doi.org/10.3390/app12178761

  47. Hernández-Nieves, E., Hernández, G., Gil-González, A.B., Rodríguez-González, S., Corchado, J.M.: CEBRA: a case-based reasoning application to recommend banking products. Eng. Appl. Artif. Intell. 104(05), 104327 (2021). https://doi.org/10.1016/j.engappai.2021.104327

    Article  Google Scholar 

  48. Chandra, W., Arliando, Y.: An application of case-based reasoning method in selection of food recipes based on ingredients Penerapan Metode case based reasoning Pada Pemilihan Resep Makanan Berdasarkan Bahan 2(1), 213–228. (2022). https://doi.org/10.53697/jkomitek.v2i1.539

  49. Jiangtao, Y.U.A.N., Ruixin, Z.H.A.N.G., Hongze, Z.H.A.O., Linlin, W.U., Yanqiang, F.A.N.: Development and application of case-based reasoning-based information system for identifying and controlling hidden danger in coal mine. China Saf. Sci. J. 28(8), 135 (2018). https://doi.org/10.16265/j.cnki.issn1003-3033.2018.08.023

  50. Apriyanto, R., Rahmawati, I., Setiawan, H.: Budi and Haryono, application of case-based reasoning in helpdesk systems. In: A paper presented at the Fourth International Conference on Informatics and Computing (ICIC) (2019). https://doi.org/10.1109/ICIC47613.2019.8985881

  51. Watson, I.: Case-based reasoning is a methodology not a technology. Knowl. Based Syst. 12(5–6), 303–308 (1999). https://doi.org/10.1016/s0950-7051(99)00020-9

    Article  Google Scholar 

  52. Deng, Z.H., Zhang, X.H., Cao, D.F., Cao, H.: Process expert system in NC Camshaft grinding on the basis of rough set and case-based reasoning. J. Mech. Eng. 46(21), 178–186 (2010)

    Article  Google Scholar 

  53. He, Y., Hao, C., Wang, Y., Li, Y., Wang, Y., Huang, L., Tian, X.: An ontology-based method of knowledge modelling for remanufacturing process planning. J. Clean. Prod. 258, 120952 (2020). https://doi.org/10.1016/j.jclepro.2020.120952

    Article  Google Scholar 

  54. Dvir, G., Langholz, G., Schneider, M.: Matching attributes in a fuzzy case-based reasoning. In: Paper presented at the 18th International Conference of the North American Fuzzy Information Processing Society, New York (1999). https://doi.org/10.1109/nafips.1999.781647

  55. Li, S., Zhang, H., Yan, W., Jiang, Z.: A hybrid method of blockchain and case-based reasoning for remanufacturing process planning. J. Intell. Manuf. (2020). https://doi.org/10.1007/s10845-020-01618-6

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kayode Abiodun Oladapo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Oladapo, K.A., Adedeji, F., Nzenwata, U.J., Quoc, B.P., Dada, A. (2023). Fuzzified Case-Based Reasoning Blockchain Framework for Predictive Maintenance in Industry 4.0. In: Rivera, G., Cruz-Reyes, L., Dorronsoro, B., Rosete, A. (eds) Data Analytics and Computational Intelligence: Novel Models, Algorithms and Applications. Studies in Big Data, vol 132. Springer, Cham. https://doi.org/10.1007/978-3-031-38325-0_12

Download citation

Publish with us

Policies and ethics