Skip to main content

\(\lambda \)-Deformed Evidence Lower Bound (\(\lambda \)-ELBO) Using Rényi and Tsallis Divergence

  • Conference paper
  • First Online:
Geometric Science of Information (GSI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14071))

Included in the following conference series:

Abstract

We investigate evidence lower bound (ELBO) with generalized/deformed entropy and generalized/deformed divergence, in place of Shannon entropy and KL divergence in the standard framework. Two equivalent forms of deformed ELBO have been proposed, suitable for either Tsallis or Rényi deformation that have been unified in the recent framework of \(\lambda \)-deformation (Wong and Zhang, 2022, IEEE Trans Inform Theory). The decomposition formulae are developed for \(\lambda \)-deformed ELBO, or \(\lambda \)-ELBO in short, now for real-valued \(\lambda \) (with \(\lambda = 0\) reducing to the standard case). The meaning of the deformation factor \(\lambda \) in the \(\lambda \)-deformed ELBO and its performance for variational autoencoder (VAE) are investigated. Naturally emerging from our formulation is a deformation homotopy probability distribution function that extrapolates encoder distribution and the latent prior. Results show that \(\lambda \) values around 0.5 generally achieve better performance in image reconstruction for generative models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Basu, A., Harris, I.R., Hjort, N.L., Jones, M.: Robust and efficient estimation by minimising a density power divergence. Biometrika 85(3), 549–559 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  2. Burda, Y., Grosse, R., Salakhutdinov, R.: Importance weighted autoencoders (2015). https://doi.org/10.48550/ARXIV.1509.00519

  3. Chen, L., Tao, C., Zhang, R., Henao, R., Duke, L.C.: Variational inference and model selection with generalized evidence bounds. In: International Conference on Machine Learning, pp. 893–902. PMLR (2018)

    Google Scholar 

  4. Chernoff, H.: A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations. The Annals of Mathematical Statistics, pp. 493–507 (1952)

    Google Scholar 

  5. Cichocki, A., Amari, S.I.: Families of alpha-beta-and gamma-divergences: Flexible and robust measures of similarities. Entropy 12(6), 1532–1568 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cressie, N., Read, T.R.: Multinomial goodness-of-fit tests. J. Roy. Stat. Soc.: Ser. B (Methodol.) 46(3), 440–464 (1984)

    MathSciNet  MATH  Google Scholar 

  7. Fujisawa, H., Eguchi, S.: Robust parameter estimation with a small bias against heavy contamination. J. Multivar. Anal. 99(9), 2053–2081 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gimenez, J.R., Zou, J.: A unified f-divergence framework generalizing vae and gan (2022). https://doi.org/10.48550/ARXIV.2205.05214

  9. Kingma, D.P., Welling, M.: Auto-encoding variational bayes (2013). https://doi.org/10.48550/ARXIV.1312.6114

  10. Kobayashis, T.: q-VAE for disentangled representation learning and latent dynamical systems. IEEE Robotics Autom. Lett. 5(4), 5669–5676 (2020). https://doi.org/10.1109/lra.2020.3010206

    Article  Google Scholar 

  11. Lafferty, J.: Additive models, boosting, and inference for generalized divergences. In: Proceedings of the Twelfth Annual Conference on Computational Learning Theory, pp. 125–133 (1999)

    Google Scholar 

  12. Li, Y., Turner, R.E.: Rényi divergence variational inference (2016). https://doi.org/10.48550/ARXIV.1602.02311

  13. Mihoko, M., Eguchi, S.: Robust blind source separation by beta divergence. Neural Comput. 14(8), 1859–1886 (2002)

    Article  MATH  Google Scholar 

  14. Mollah, M.N.H., Sultana, N., Minami, M., Eguchi, S.: Robust extraction of local structures by the minimum \(\beta \)-divergence method. Neural Netw. 23(2), 226–238 (2010)

    Article  MATH  Google Scholar 

  15. Nielsen, F., Nock, R.: On rényi and tsallis entropies and divergences for exponential families. arXiv: 1105.3259 (2011)

  16. Prokhorov, V., Shareghi, E., Li, Y., Pilehvar, M.T., Collier, N.: On the importance of the Kullback-Leibler divergence term in variational autoencoders for text generation. In: Proceedings of the 3rd Workshop on Neural Generation and Translation, pp. 118–127. Association for Computational Linguistics, Hong Kong (Nov 2019). https://doi.org/10.18653/v1/D19-5612

  17. Regli, J.B., Silva, R.: Alpha-beta divergence for variational inference (2018)

    Google Scholar 

  18. Sajid, N., Faccio, F., Da Costa, L., Parr, T., Schmidhuber, J., Friston, K.: Bayesian brains and the rényi divergence (2021). https://doi.org/10.48550/ARXIV.2107.05438

  19. Sârbu, S., Malagò, L.: Variational autoencoders trained with q-deformed lower bounds (2019)

    Google Scholar 

  20. Sârbu, S., Volpi, R., Peşte, A., Malagò, L.: Learning in variational autoencoders with kullback-leibler and renyi integral bounds (2018). https://doi.org/10.48550/ARXIV.1807.01889

  21. Taneja, I.J.: New developments in generalized information measures. In: Advances in Imaging and Electron Physics, vol. 91, pp. 37–135. Elsevier (1995)

    Google Scholar 

  22. Tsallis, C.: What are the numbers that experiments provide. Quim. Nova 17, 468–471 (1994)

    Google Scholar 

  23. Wang, Z., et al.: Variational inference mpc using tsallis divergence (2021). https://doi.org/10.48550/ARXIV.2104.00241

  24. Wong, T.K.L., Zhang, J.: Tsallis and rényi deformations linked via a new \(\lambda \)-duality. IEEE Trans. Inf. Theory 68(8), 5353–5373 (2022). https://doi.org/10.1109/TIT.2022.3159385

    Article  MATH  Google Scholar 

  25. Zhang, J., Wong, T.K.L.: \(\lambda \)-Deformed probability families with subtractive and divisive normalizations, vol. 45, pp. 187–215 (Jan 2021). https://doi.org/10.1016/bs.host.2021.06.003

  26. Zhang, J., Wong, T.K.L.: λ-deformation: A canonical framework for statistical manifolds of constant curvature. Entropy 24(2) (2022). https://doi.org/10.3390/e24020193

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cheng, K., Zhang, J. (2023). \(\lambda \)-Deformed Evidence Lower Bound (\(\lambda \)-ELBO) Using Rényi and Tsallis Divergence. In: Nielsen, F., Barbaresco, F. (eds) Geometric Science of Information. GSI 2023. Lecture Notes in Computer Science, vol 14071. Springer, Cham. https://doi.org/10.1007/978-3-031-38271-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-38271-0_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-38270-3

  • Online ISBN: 978-3-031-38271-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics