Skip to main content

On the f-Divergences Between Hyperboloid and Poincaré Distributions

  • Conference paper
  • First Online:
Geometric Science of Information (GSI 2023)

Abstract

Hyperbolic geometry has become popular in machine learning due to its capacity to embed discrete hierarchical graph structures with low distortions into continuous spaces for further downstream processing. It is thus becoming important to consider statistical models and inference methods for data sets grounded in hyperbolic spaces. In this work, we study the statistical f-divergences between two kinds of hyperbolic distributions: The Poincaré distributions and the related hyperboloid distributions. By exhibiting maximal invariants of group actions, we show how these f-divergences can be expressed as functions of canonical terms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Hyperbolic geometry has constant negative curvature and the volume of hyperbolic balls increases exponentially with respect to their radii rather than polynomially as in Euclidean spaces.

References

  1. Ali, S.M., Silvey, S.D.: A general class of coefficients of divergence of one distribution from another. J. Roy. Stat. Soc.: Ser. B (Methodol.) 28(1), 131–142 (1966)

    MathSciNet  MATH  Google Scholar 

  2. Anderson, J.W.: Hyperbolic geometry. Springer Science & Business Media (2006)

    Google Scholar 

  3. Banerjee, A., Dhillon, I.S., Ghosh, J., Sra, S., Ridgeway, G.: Clustering on the Unit Hypersphere using von Mises-Fisher Distributions. J. Mach. Learn. Res. 6(9) (2005)

    Google Scholar 

  4. Barbaresco, F.: Lie group machine learning and gibbs density on Poincaré unit disk from souriau lie groups thermodynamics and su(1,1) coadjoint orbits. In: Nielsen, F., Barbaresco, F. (eds.) GSI 2019. LNCS, vol. 11712, pp. 157–170. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26980-7_17

    Chapter  Google Scholar 

  5. Barndorff-Nielsen, O.: Hyperbolic distributions and distributions on hyperbolae. Scand. J. Stat. 5, 151–157 (1978)

    MathSciNet  MATH  Google Scholar 

  6. Barndorff-Nielsen, O.: Exponentially decreasing distributions for the logarithm of particle size. Proc. Royal Society of London. A. Math. Phys. Sci. 353(1674), 401–419 (1977)

    Google Scholar 

  7. Barndorff-Nielsen, O.: The hyperbolic distribution in statistical physics. Scandinavian J. Stat. 9(1), 43–46 (1982)

    Google Scholar 

  8. Barndorff-Nielsen, O.: Information and exponential families: in statistical theory. John Wiley & Sons (2014)

    Google Scholar 

  9. Barndorff-Nielsen, O., Blaesild, P.: Hyperbolic distributions and ramifications: Contributions to theory and application. In: Statistical distributions in scientific work, pp. 19–44. Springer (1981). https://doi.org/10.1007/978-94-009-8549-0_2

  10. Blæsild, P.: The two-dimensional hyperbolic distribution and related distributions, with an application to Johannsen’s bean data. Biometrika 68(1), 251–263 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cannon, J.W., Floyd, W.J., Kenyon, R., Parry, W.R., et al.: Hyperbolic geometry. Flavors of geometry 31(59–115), 2 (1997)

    Google Scholar 

  12. Cho, H., DeMeo, B., Peng, J., Berger, B.: Large-margin classification in hyperbolic space. In: The 22nd International Conference on Artificial Intelligence and Statistics, pp. 1832–1840. PMLR (2019)

    Google Scholar 

  13. Cohen, T., Welling, M.: Harmonic exponential families on manifolds. In: International Conference on Machine Learning, pp. 1757–1765. PMLR (2015)

    Google Scholar 

  14. Csiszár, I.: Eine informationstheoretische ungleichung und ihre anwendung auf beweis der ergodizitaet von markoffschen ketten. Magyer Tud. Akad. Mat. Kutato Int. Koezl. 8, 85–108 (1964)

    Google Scholar 

  15. Eaton, M.L.: Group invariance applications in statistics. Hayward, CA: Institute of Mathematical Statistics; Alexandria, VA: American Statistical Association (1989)

    Google Scholar 

  16. Jensen, J.L.: On the hyperboloid distribution. Scandinavian J. Stat.8(4), 193–206 (1981)

    Google Scholar 

  17. Jüttner, F.: Das Maxwellsche Gesetz der Geschwindigkeitsverteilung in der Relativtheorie. Ann. Phys. 339(5), 856–882 (1911)

    Article  MATH  Google Scholar 

  18. Nielsen, F., Okamura, K.: Information measures and geometry of the hyperbolic exponential families of Poincaré and hyperboloid distributions. arXiv preprint arXiv:2205.13984 (2022)

  19. Nielsen, F., Okamura, K.: On \(f\)-divergences between Cauchy distributions. IEEE Trans. Inf. Theory 69(5), 3150–3171 (2023)

    Article  MathSciNet  Google Scholar 

  20. Sarkar, R.: Low distortion delaunay embedding of trees in hyperbolic plane. In: van Kreveld, M., Speckmann, B. (eds.) GD 2011. LNCS, vol. 7034, pp. 355–366. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-25878-7_34

    Chapter  Google Scholar 

  21. Tojo, K., Yoshino, T.: An exponential family on the upper half plane and its conjugate prior. In: Barbaresco, F., Nielsen, F. (eds.) SPIGL 2020. SPMS, vol. 361, pp. 84–95. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77957-3_4

    Chapter  MATH  Google Scholar 

  22. Tojo, K., Yoshino, T.: Harmonic exponential families on homogeneous spaces. Inform. Geometry 4(1), 215–243 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  23. Tojo, K., Yoshino, T.: Classification problem of invariant \(q\)-exponential families on homogeneous spaces. In: Mathematical optimization and statistical theories using geometric methods OCAMI Reports, Vol. 8, pp. 85–104. Osaka Central Advanced Mathematical Institute (OCAMI) (2022). https://doi.org/10.24544/ocu.20221208-007

  24. Verdú, S.: The Cauchy Distribution in Information Theory. entropy 25(2), 346 (2023)

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to two anonymous referees for valuable comments. It is worth of special mention that Remark 1 is suggested by one referee and the proof of Proposition 2 is suggested by the other referee.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Nielsen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nielsen, F., Okamura, K. (2023). On the f-Divergences Between Hyperboloid and Poincaré Distributions. In: Nielsen, F., Barbaresco, F. (eds) Geometric Science of Information. GSI 2023. Lecture Notes in Computer Science, vol 14071. Springer, Cham. https://doi.org/10.1007/978-3-031-38271-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-38271-0_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-38270-3

  • Online ISBN: 978-3-031-38271-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics