Skip to main content

Flux-Weakening Control

  • Chapter
  • First Online:
Practical Control of Electric Machines for EV/HEVs

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 1064))

Abstract

Flux-weakening is essential for high speed electric machine control. Various flux-weakening approaches are analyzed and discussed in this chapter. Also, the I-limit, V-limit, Q-limit, \(\varPsi \)-limit, and T-limit are introduced. These limits play a critical part in the flux-weakening strategy design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    \(I_d^{{\text{ lim }}}\) is the same as \(I_d^{{\text{ dmd }}}\) for fast torque control strategy.

  2. 2.

    \(\omega _1>\omega _b\). \(\omega _b\) is the base speed as defined in Sect. 3.9.

  3. 3.

    Q-limit in this case is not a limiting factor.

  4. 4.

    Nevertheless, the design of an intelligent and delicate integral term for limit control is still possible, but it is not within the scope of this book.

  5. 5.

    \(L_m^2 = L_{SS} L_{RR}\approx L_s L_r\).

  6. 6.

    Flux saturation will be explicitly controlled at Sect. 7.5.

  7. 7.

    Flux-weakening specified as in Sect. 7.2 (covering both Type1 and Type2) shall be used when \(I_{max}<I_{max}^{{\text{ iC }}}\), and Sect. 7.3 (Type1 only) when \(I_{max}>I_{max}^{{\text{ qC }}}\).

  8. 8.

    The flux weakening is along the MTPF line when \(I_{max}\ge I_{max}^{{\text{ pC }}}\). By contrast, the system shall operate along \(i_{sq}=\text {cnst}\) to perform flux-weakening firstly, and then along the MTPF line once \(\omega _s>\omega _c\).

References

  1. Abu-Rub H, Schmirgel H, Holtz J (2007) Maximum torque production in rotor field oriented control of an induction motor at field weakening. In: 2007 IEEE international symposium on industrial electronics. IEEE, pp 1159–1164

    Google Scholar 

  2. Del Blanco FB, Degner MW, Lorenz RD (1999) Dynamic analysis of current regulators for ac motors using complex vectors. IEEE Trans Ind Appl 35(6):1424–1432

    Article  Google Scholar 

  3. Dong Z, Yu Y, Li W, Wang B, Xu D (2017) Flux-weakening control for induction motor in voltage extension region: torque analysis and dynamic performance improvement. IEEE Trans Ind Electron 65(5):3740–3751

    Article  Google Scholar 

  4. Holtz J, Quan J, Schmittt G, Pontt J, Rodriguez J, Newman P, Miranda H (2003) Design of fast and robust current regulators for high power drives based on complex state variables. In: 38th IAS annual meeting on conference record of the industry applications conference, 2003. IEEE, vol 3, pp 1997–2004

    Google Scholar 

  5. Kaboli S, Zolghadri MR, Vahdati-Khajeh E (2007) A fast flux search controller for dtc-based induction motor drives. IEEE Trans Ind Electron 54(5):2407–2416

    Article  Google Scholar 

  6. Kim SH, Sul SK (1995) Maximum torque control of an induction machine in the field weakening region. IEEE Trans Ind Appl 31(4):787–794

    Article  Google Scholar 

  7. Lin PY, Lai YS (2010) Novel voltage trajectory control for field-weakening operation of induction motor drives. IEEE Trans Ind Appl 47(1):122–127

    Article  MathSciNet  Google Scholar 

  8. Miguel-Espinar C, Heredero-Peris D, Gross G, Llonch-Masachs M, Montesinos-Miracle D (2020) Maximum torque per voltage flux-weakening strategy with speed limiter for pmsm drives. IEEE Trans Ind Electron 68(10):9254–9264

    Article  Google Scholar 

  9. Novotny DW, Lipo TA (1996) Vector control and dynamics of AC drives, vol 41. Oxford University Press

    Google Scholar 

  10. Pellegrino G, Bojoi RI, Guglielmi P (2011) Unified direct-flux vector control for ac motor drives. IEEE Trans Ind Appl 47(5):2093–2102

    Article  Google Scholar 

  11. Xu X, Novotny DW (1992) Selection of the flux reference for induction machine drives in the field weakening region. IEEE Trans Ind Appl 28(6):1353–1358

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuiwen Shen .

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shen, S., Chen, Qz. (2024). Flux-Weakening Control. In: Practical Control of Electric Machines for EV/HEVs . Lecture Notes in Electrical Engineering, vol 1064. Springer, Cham. https://doi.org/10.1007/978-3-031-38161-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-38161-4_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-38160-7

  • Online ISBN: 978-3-031-38161-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics