Skip to main content

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 1064))

  • 338 Accesses

Abstract

Driven by the environmental concerns, it is now commonly acknowledged that conventional fossil fuel-powered vehicles will gradually phase out and be vastly replaced by electrified vehicles. In order to boost this transition, many countries have strengthened their policy support covering from the development of hybrid electric vehicles (HEVs) and pure electric vehicles (EVs) down to their deployment into the market. This has become an ongoing profound revolution in the car industry, not only because of the transition of technologies and the reshuffling of the downstream powertrain supply chains, but also due to many more niche competitors joining this race. It can be predicted that the future of the car industry will be very much reshaped in the coming dozens of years if not shorter. In this chapter, commercial candidates of HEV/EV traction motors are reviewed. Selection criteria of motor drive technologies for automotive applications are summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    It is also referred to as alignment torque.

References

  1. Agamloh E, Von Jouanne A, Yokochi A (2020) An overview of electric machine trends in modern electric vehicles. Machines 8(2):20

    Article  Google Scholar 

  2. Bianchi N, Bolognani S, Bon D, Dai Pre M (2009) Rotor flux-barrier design for torque ripple reduction in synchronous reluctance and pm-assisted synchronous reluctance motors. IEEE Trans Ind Appl 45(3):921–928

    Article  Google Scholar 

  3. Bibra EM, Connelly E, Dhir S, Drtil M, Henriot P, Hwang I, Le Marois JB, McBain S, Paoli L, Teter J (2022) Global ev outlook 2022: securing supplies for an electric future

    Google Scholar 

  4. Bose BK et al (2002) Modern power electronics and AC drives, vol 123. Prentice hall, Upper Saddle River, NJ

    Google Scholar 

  5. Burwell M, Carosa P, Kirtley J, Rippel W, Sanner J, Seger D (2014) Improving the high speed efficiency of xev induction motors

    Google Scholar 

  6. Callegaro AD, Bilgin B, Emadi A (2019) Radial force shaping for acoustic noise reduction in switched reluctance machines. IEEE Trans Power Electron 34(10):9866–9878

    Article  Google Scholar 

  7. Credo A, Fabri G, Villani M, Popescu M (2020) Adopting the topology optimization in the design of high-speed synchronous reluctance motors for electric vehicles. IEEE Trans Ind Appl 56(5):5429–5438

    Article  Google Scholar 

  8. De Santiago J, Bernhoff H, Ekergård B, Eriksson S, Ferhatovic S, Waters R, Leijon M (2011) Electrical motor drivelines in commercial all-electric vehicles: A review. IEEE Trans Veh Technol 61(2):475–484

    Article  Google Scholar 

  9. Dos Santos FL, Anthonis J, Naclerio F, Gyselinck JJ, Van der Auweraer H, Góes LC (2013) Multiphysics NVH modeling: Simulation of a switched reluctance motor for an electric vehicle. IEEE Trans Ind Electron 61(1):469–476

    Article  Google Scholar 

  10. Dubois A, Van Der Geest M, Bevirt J, Christie R, Borer NK, Clarke SC (2016) Design of an electric propulsion system for sceptor’s outboard nacelle. In: 16th AIAA aviation technology, integration, and operations conference, p 3925

    Google Scholar 

  11. Edmondson J (2022) Electric motors for electric vehicles: technologies and market outlook https://fpc-event.co.uk/wp-content/uploads/2022/03/james.edmondson.electric_machines-1.pdf

  12. Fratta A, Troglia G, Vagati A, Villata F (1993) Evaluation of torque ripple in high performance synchronous reluctance machines. In: Conference record of the 1993 IEEE industry applications conference twenty-eighth IAS annual meeting. IEEE, pp 163–170

    Google Scholar 

  13. Gan C, Wu J, Sun Q, Kong W, Li H, Hu Y (2018) A review on machine topologies and control techniques for low-noise switched reluctance motors in electric vehicle applications. IEEE Access 6:31,430–31,443

    Google Scholar 

  14. Goss J (2019) Performance analysis of electric motor technologies for an electric vehicle powertrain. Wrexham, UK, Motor Design Ltd, White Paper

    Google Scholar 

  15. Gundogdu T, Zhu ZQ, Chan CC (2022) Comparative study of permanent magnet, conventional, and advanced induction machines for traction applications. World Electric Veh J 13(8):137

    Article  Google Scholar 

  16. Han S, Diao K, Sun X (2021) Overview of multi-phase switched reluctance motor drives for electric vehicles. Adv Mech Eng 13(9):16878140211045,195

    Google Scholar 

  17. He T, Zhu Z, Eastham F, Wang Y, Bin H, Wu D, Gong L, Chen J (2022) Permanent magnet machines for high-speed applications. World Electric Veh J 13(1):18

    Article  Google Scholar 

  18. Heidari H, Rassõlkin A, Kallaste A, Vaimann T, Andriushchenko E, Belahcen A, Lukichev DV (2021) A review of synchronous reluctance motor-drive advancements. Sustainability 13(2):729

    Article  Google Scholar 

  19. Hofmann A, Al-Dajani A, Bösing M, De Doncker RW (2013) Direct instantaneous force control: A method to eliminate mode-0-borne noise in switched reluctance machines. In: 2013 international electric machines & drives conference. IEEE, pp 1009–1016

    Google Scholar 

  20. Houache MS, Yim CH, Karkar Z, Abu-Lebdeh Y (2022) On the current and future outlook of battery chemistries for electric vehicles-mini review. Batteries 8(7):70

    Article  Google Scholar 

  21. Hwang D, Gu BG (2020) Field current control strategy for wound-rotor synchronous motors considering coupled stator flux linkage. IEEE Access 8:111,811–111,821

    Google Scholar 

  22. Kim H, Park Y, Liu HC, Han PW, Lee J (2020) Study on line-start permanent magnet assistance synchronous reluctance motor for improving efficiency and power factor. Energies 13(2):384

    Article  Google Scholar 

  23. Kiyota K, Kakishima T, Chiba A (2014) Comparison of test result and design stage prediction of switched reluctance motor competitive with 60-kw rare-earth pm motor. IEEE Trans Ind Electron 61(10):5712–5721

    Article  Google Scholar 

  24. Krishnan R (2017) Switched reluctance motor drives: modeling, simulation, analysis, design, and applications. CRC Press

    Book  Google Scholar 

  25. Lee CH, Hua W, Long T, Jiang C, Iyer LV (2021) A critical review of emerging technologies for electric and hybrid vehicles. IEEE Open J Veh Technol 2:471–485

    Article  Google Scholar 

  26. Ludois DC, Brown I (2017) Brushless and permanent magnet free wound field synchronous motors for ev traction. Tech. rep., Univ. of Wisconsin, Madison, WI (United States)

    Google Scholar 

  27. Mahmoudi A, Soong WL, Pellegrino G, Armando E (2015) Efficiency maps of electrical machines. In: 2015 IEEE energy conversion congress and exposition (ECCE). IEEE, pp 2791–2799

    Google Scholar 

  28. Miller TJE (2001) Electronic control of switched reluctance machines. Elsevier

    Google Scholar 

  29. Motor XP (2020) Performance analysis of the tesla model 3 electric motor using motorxp-pm

    Google Scholar 

  30. Neuhaus CR, Fuengwarodsakul NH, De Doncker RW (2006) Predictive PWM-based direct instantaneous torque control of switched reluctance drives. In: 2006 37th IEEE power electronics specialists conference. IEEE, pp 1–7

    Google Scholar 

  31. Nie Y, Brown IP, Ludois DC (2017) Deadbeat-direct torque and flux control for wound field synchronous machines. IEEE Trans Ind Electron 65(3):2069–2079

    Article  Google Scholar 

  32. Nøland JK, Nuzzo S, Tessarolo A, Alves EF (2019) Excitation system technologies for wound-field synchronous machines: survey of solutions and evolving trends. IEEE Access 7:109,699–109,718

    Google Scholar 

  33. Oprea C, Dziechciarz A, Martis C (2015) Comparative analysis of different synchronous reluctance motor topologies. In: 2015 IEEE 15th international conference on environment and electrical engineering (EEEIC). IEEE, pp 1904–1909

    Google Scholar 

  34. Ozcelik NG, Dogru UE, Imeryuz M, Ergene LT (2019) Synchronous reluctance motor vs. induction motor at low-power industrial applications: design and comparison. Energies 12(11):2190

    Google Scholar 

  35. Pavel CC, Marmier A, Alves Dias P, Blagoeva D, Tzimas E, Schüler D, Schleicher T, Jenseit W, Degreif S, Buchert M (2016) Substitution of critical raw materials in low-carbon technologies: lighting, wind turbines and electric vehicles. European Commission, Oko-Institut eV, Luxembourg

    Google Scholar 

  36. Pellegrino G, Vagati A, Guglielmi P, Boazzo B (2011) Performance comparison between surface-mounted and interior pm motor drives for electric vehicle application. IEEE Trans Ind Electron 59(2):803–811

    Article  Google Scholar 

  37. Pellegrino G, Vagati A, Boazzo B, Guglielmi P (2012) Comparison of induction and pm synchronous motor drives for ev application including design examples. IEEE Trans Ind Appl 48(6):2322–2332

    Article  Google Scholar 

  38. Petersson A (2005) Analysis, modeling and control of doubly-fed induction generators for wind turbines. Chalmers Tekniska Hogskola (Sweden)

    Google Scholar 

  39. Popescu M, Goss J, Staton DA, Hawkins D, Chong YC, Boglietti A (2018) Electrical vehicles-practical solutions for power traction motor systems. IEEE Trans Ind Appl 54(3):2751–2762

    Article  Google Scholar 

  40. Popescu M, Riviere N, Volpe G, Villani M, Fabri G, di Leonardo L (2019) A copper rotor induction motor solution for electrical vehicles traction system. In: 2019 IEEE energy conversion congress and exposition (ECCE). IEEE, pp 3924–3930

    Google Scholar 

  41. Radun AV (1995) Design considerations for the switched reluctance motor. IEEE Trans Ind Appl 31(5):1079–1087

    Article  Google Scholar 

  42. Ralev I, Qi F, Burkhart B, Klein-Hessling A, De Doncker RW (2017) Impact of smooth torque control on the efficiency of a high-speed automotive switched reluctance drive. IEEE Trans Ind Appl 53(6):5509–5517

    Article  Google Scholar 

  43. Rao D, Bagianathan M (2021) Selection of optimal magnets for traction motors to prevent demagnetization. Machines 9(6):124

    Article  Google Scholar 

  44. Riba JR, López-Torres C, Romeral L, Garcia A (2016) Rare-earth-free propulsion motors for electric vehicles: a technology review. Renew Sustain Energy Rev 57:367–379

    Article  Google Scholar 

  45. Sarlioglu B, Morris CT, Han D, Li S (2016) Driving toward accessibility: a review of technological improvements for electric machines, power electronics, and batteries for electric and hybrid vehicles. IEEE Ind Appl Mag 23(1):14–25

    Article  Google Scholar 

  46. Sirimanna S, Balachandran T, Haran K (2022) A review on magnet loss analysis, validation, design considerations, and reduction strategies in permanent magnet synchronous motors. Energies 15(17):6116

    Article  Google Scholar 

  47. Staton D, Miller T, Wood S (1993) Maximising the saliency ratio of the synchronous reluctance motor. In: IEE proceedings B (electric power applications), IET, vol 140, pp 249–259

    Google Scholar 

  48. Tahi S, Ibtiouen R, Bounekhla M (2011) Design optimization of two synchronous reluctance machine structures with maximized torque and power factor. Prog Electromagn Res B 35:369–387

    Article  Google Scholar 

  49. Takeno M, Chiba A, Hoshi N, Ogasawara S, Takemoto M, Rahman MA (2012) Test results and torque improvement of the 50-kw switched reluctance motor designed for hybrid electric vehicles. IEEE Trans Ind Appl 48(4):1327–1334

    Article  Google Scholar 

  50. Thomas R, Husson H, Garbuio L, Gerbaud L (2021) Comparative study of the tesla model s and audi e-tron induction motors. In: 2021 17th conference on electrical machines drives and power systems (ELMA). IEEE, pp 1–6

    Google Scholar 

  51. Trzynadlowski AM (2000) Control of induction motors. Elsevier

    Google Scholar 

  52. Vagati A, Canova A, Chiampi M, Pastorelli M, Repetto M (2000) Design refinement of synchronous reluctance motors through finite-element analysis. IEEE Trans Ind Appl 36(4):1094–1102

    Article  Google Scholar 

  53. Welchko B, Huse JB, Hiti S, Conlon BM, Stancu CC, Rahman KM, Tang D, Cawthorne WR (2011) Fault handling of inverter driven pm motor drives. US Patent App. 11/962,370

    Google Scholar 

  54. Widmer JD, Martin R, Kimiabeigi M (2015) Electric vehicle traction motors without rare earth magnets. Sustain Mater Technol 3:7–13

    Google Scholar 

  55. Yang Y, Hu X, Pei H, Peng Z (2016) Comparison of power-split and parallel hybrid powertrain architectures with a single electric machine: Dynamic programming approach. Appl Energy 168:683–690

    Article  Google Scholar 

  56. Yang Z, Shang F, Brown IP, Krishnamurthy M (2015) Comparative study of interior permanent magnet, induction, and switched reluctance motor drives for ev and hev applications. IEEE Trans Transp Electr 1(3):245–254

    Article  Google Scholar 

  57. Ye J, Bilgin B, Emadi A (2015) An offline torque sharing function for torque ripple reduction in switched reluctance motor drives. IEEE Trans Energy Convers 30(2):726–735

    Article  Google Scholar 

  58. Zeraoulia M, Benbouzid MEH, Diallo D (2006) Electric motor drive selection issues for hev propulsion systems: a comparative study. IEEE Trans Veh Technol 55(6):1756–1764

    Article  Google Scholar 

  59. Zhu Z, Chu W, Guan Y (2017) Quantitative comparison of electromagnetic performance of electrical machines for hevs/evs. CES Trans Electr Mach Syst 1(1):37–47

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuiwen Shen .

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shen, S., Chen, Qz. (2024). Introduction. In: Practical Control of Electric Machines for EV/HEVs . Lecture Notes in Electrical Engineering, vol 1064. Springer, Cham. https://doi.org/10.1007/978-3-031-38161-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-38161-4_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-38160-7

  • Online ISBN: 978-3-031-38161-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics