Abstract
From an environmental perspective, green hydrogen is a promising alternative energy carrier for short-to middle-range flights. Furthermore, hydrogen produced from renewable energy releases no carbon dioxide emissions during production and use. Therefore, hydrogen is a potential solution for reducing aviation-related emissions. Besides, the economic competitiveness of hydrogen against conventional fuels, mainly influenced by the hydrogen supply chain design, will be a key determinant for future hydrogen deployment. The supply chain consists of production, compression, transportation, and liquefaction, but these components’ exact order, sizing, and location are still insecure. Different transport options exist, which are associated with various economic impacts during their purchase and use, as well as various supply chain configurations result in different overall expenses. We analyze demand and distance scenarios using an expense-oriented economic evaluation with CAPEX and OPEX to determine the best transport configuration. The total expenses of hydrogen are highly influenced by the expenses caused by energy and transport volume. Here, pipeline transportation is a promising option, as well as liquid hydrogen truck transportation in cryogenic tanks. It turns out that distance and demand for hydrogen strongly influence the choice of transportation.
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
ADAC: Durchschnittlicher Preis für Diesel-Kraftstoff in Deutschland vom 7. Januar 2014 bis zum 27. September 2022 [Online], Statista. https://bit.ly/3EiRqWe. Accessed 8 Oct 2022
Atlas Copco (ed) (2021) Was kostet Stickstoff? [Online]. https://bit.ly/3AKymiX. Accessed 15 Sept 2022
Barke, A., Thies, C., Melo, S.P., Cerdas, F., Herrmann, C., Spengler, T.S.: Comparison of conventional and electric passenger aircraft for short-haul flights – a life cycle sustainability assessment. Procedia CIRP 105, 464–469 (2022)
BDEW (2022) Industriestrompreise* (inklusive Stromsteuer) in Deutschland in den Jahren 1998 bis 2022 [Online], Statista
Bhandari, R., Trudewind, C.A., Zapp, P.: Life cycle assessment of hydrogen production via electrolysis – a review. J. Clean. Prod. 85, 151–163 (2014)
Boeing (ed): Commercial market outlook: 2022–2042 (2022). https://www.boeing.com/commercial/market/commercial-market-outlook/index.page. Accessed 15 Aug 2022
Bracha, M., Lorenz, G., Patzelt, A., Wanner, M.: Large-scale hydrogen liquefaction in Germany. Int. J. Hydrogen Energy 19(1), 53–59 (1994)
Burgueño Salas, E.: Global air traffic - scheduled passengers 2004–2022 (2022). https://bit.ly/2rNTzVm. Accessed 29 Aug 2022
Cerniauskas, S., Jose Chavez Junco, A., Grube, T., Robinius, M., Stolten, D.: Options of natural gas pipeline reassignment for hydrogen: cost assessment for a Germany case study. Int. J. Hydrogen Energy 45(21), 12095–12107 (2020)
Crittenden, M.: Ultralight batteries for electric airplanes. IEEE Spectr. 57(9), 44–49 (2020)
Deutsche Bundesbank (ed): Euro-Referenzkurs der EZB / 1 EUR = … USD / Vereinigte Staaten (2022a). https://bit.ly/3Go7hpl. Accessed 17 Nov 2022a
Deutsche Bundesbank (ed): Euro-Referenzkurse der Europäischen Zentralbank: Jahresendstände und –durchschnitte (2022b). https://bit.ly/3AmOg2w. Accessed 17 Nov 2022b
European Commission, Directorate-General for Mobility and Transport and Directorate-General for Research and Innovation: Flightpath 2050: Europe’s vision for aviation: maintaining global leadership and serving society’s needs, Publications Office (2011)
Eurostat: trompreise nach Art des Benutzers (2021). https://bit.ly/3Ol66cc. Accessed 22 Jul 2022
Farokhi, S.: Future Propulsion Systems and Energy Sources in Sustainable Aviation. Wiley (2019)
Graver, B., Rutherford, D., Zheng, S.: CO2 Emissions from commercial aviation: 2013, 2018 and 2019 [Online], International Council on Clean Transportation, Washington DC (2020)
Guo, Y., Li, G., Zhou, J., Liu, Y.: Comparison between hydrogen production by alkaline water electrolysis and hydrogen production by PEM electrolysis. IOP Conf. Ser. Earth Environ. Sci. 371(4), 42022 (2019)
Hoelzen, J., Flohr, M., Silberhorn, D., Mangold, J., Bensmann, A., Hanke-Rauschenbach, R.: H2-powered aviation at airports – design and economics of LH2 refueling systems. Energy Convers. Manage. X 14, 100206 (2022)
Jungbluth, N., Meili, C.: Recommendations for calculation of the global warming potential of aviation including the radiative forcing index. Int. J. Life Cycle Assess. 24(3), 404–411 (2018). https://doi.org/10.1007/s11367-018-1556-3
Kayfeci, M., Keçebaş, A., Bayat, M.: Hydrogen production. In: Solar Hydrogen Production, pp. 45–83. Elsevier (2019)
Klell, M., Eichlseder, H., nd Trattner, A.: Wasserstoff in der Fahrzeugtechnik, Wiesbaden. Springer Fachmedien Wiesbaden (2018). https://doi.org/10.1007/978-3-658-20447-1
Komarov, I.I., Rogalev, A.N., Kharlamova, D.M., Yu Naumov, V., Shabalova, S.I.: Comparative analysis of the efficiency of using hydrogen and steam methane reforming storage at combined cycle gas turbine for cogeneration. J. Phys. Conf. Ser. 2053(1), 12007 (2021)
Kords, M.: Anteil der Verkehrsträger an den weltweiten CO2-Emissionen aus der Verbrennung fossiler Brennstoffe in den Jahren 2018 und 2019, IEA (2022). https://bit.ly/2ItYc0z. Accessed 15 Aug 2022
Lee, D.S., et al.: The contribution of global aviation to anthropogenic climate forcing for 2000 to 2018. Atmos. Environ. (Oxford, England: 1994) 244, 117834 (2021)
LeValley, T.L., Richard, A.R., Fan, M.: The progress in water gas shift and steam reforming hydrogen production technologies – a review. Int. J. Hydrogen Energy 39(30), 16983–17000 (2014)
Mayer, T., Semmel, M., Guerrero Morales, M.A., Schmidt, K.M., Bauer, A., Wind, J.: Techno-economic evaluation of hydrogen refueling stations with liquid or gaseous stored hydrogen. Int. J. Hydrogen Energy 44(47), 25809–25833 (2019)
Milewski, J., Guandalini, G., Campanari, S.: Modeling an alkaline electrolysis cell through reduced-order and loss-estimate approaches. J. Power Sources 269, 203–211 (2014)
Mischner, J., Fasold, H.-G., Kadner, K.: Gas2energy.net: Systemplanerische Grundlagen der Gasversorgung, Deutscher Industrieverlag (2011)
Newborough, M., Cooley, G.: Developments in the global hydrogen market: the spectrum of hydrogen colours. Fuel Cells Bull. 2020(11), 16–22 (2020)
Niermann, M., Timmerberg, S., Drünert, S., Kaltschmitt, M.: Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen. Renew. Sustain. Energy Rev. 135, 110171 (2021)
Ponater, M., Marquardt, L., Ström, K., Gierens, R., Sausen, R.: On the potential of the cryoplane technology to reduce aircraft climate impact [Online], Friedrichshafen, DLR-Institut für Physik der Atmosphäre (2003). https://bit.ly/3X7kBnP. Accessed 11 Nov 2022
Pornet, C., Isikveren, A.T.: Conceptual design of hybrid-electric transport aircraft. Prog. Aerosp. Sci. 79, 114–135 (2015)
Reuß, M., Grube, T., Robinius, M., Preuster, P., Wasserscheid, P., Stolten, D.: Seasonal storage and alternative carriers: a flexible hydrogen supply chain model. Appl. Energy 200, 290–302 (2017)
Reuß, M., Grube, T., Robinius, M., Stolten, D.: A hydrogen supply chain with spatial resolution: comparative analysis of infrastructure technologies in Germany. Appl. Energy 247, 438–453 (2019)
Rogelj, J., Shindell, D., Jiang, K.: Mitigation pathways compatible with 1.5°C in the context of sustainable development [Online]. IPCC (2018). https://www.ipcc.ch/sr15/chapter/chapter-2/. Accessed 29 Aug 2022
Sánchez-Bastardo, N., Schlögl, R., Ruland, H.: Methane pyrolysis for zero-emission hydrogen production: a potential bridge technology from fossil fuels to a renewable and sustainable hydrogen economy. Ind. Eng. Chem. Res. 60(32), 11855–11881 (2021)
Teichmann, D., Arlt, W., Wasserscheid, P.: Liquid organic hydrogen carriers as an efficient vector for the transport and storage of renewable energy. Int. J. Hydrogen Energy 37(23), 18118–18132 (2012)
Töpler, J., Lehmann, J.: Wasserstoff und Brennstoffzelle, Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-53360-4
Ulleberg, Ø., Hancke, R.: Techno-economic calculations of small-scale hydrogen supply systems for zero emission transport in Norway. Int. J. Hydrogen Energy 45(2), 1201–1211 (2020)
Verstraete, D.: The Potential of Liquid Hydrogen for long range aircraft propulsion (2008)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Appendix
Appendix
Appendix A:
Parametrization of the three supply chain configurations
Stage \({\varvec{i}}\) | Parameter | Configuration 1 | Configuration 2 | Configuration 3 |
---|---|---|---|---|
Prices | \(p^{{{\text{Electricity}}}}\) | 0.2664 €/kWh | ||
\(p^{{{\text{Nitrogen}}}}\) | 0.2 – 0.35 €/l | |||
\(p^{{{\text{Fuel}}}}\) | 2 €/l | |||
\(p^{{{\text{Driver}}}}\) | 35 €/h | |||
Liquefaction | \(c_{Liquefaction}^{{{\text{CAPEX}}}}\) | 105 million €\( \left( {\frac{{b_{Liquefaction} }}{50\,t/day}} \right)^{0.66}\) | ||
\(b_{Liquefaction}\) | 83,000 t/year | 82,000 t/year | 82,000 t/year | |
\(\tau_{i}\) | 20 years | |||
\(c^{{{\text{Maintenance}}}}\)\(\left( {c_{Liquefaction}^{{{\text{CAPEX}}}} } \right)\) | 4% | |||
Losses | 1.65% | |||
\(a_{Liquefaction}^{{{\text{Nitrogen}}}}\) | 100,000 l/year | |||
\(a_{Liquefaction}^{{{\text{Electricity}}}}\) | 6.78 kWh/kg | |||
Compression | \(c_{Compression}^{{{\text{CAPEX}}}}\) | 15,000 €\(\left( {\frac{{b_{compression} }}{1\,kW}} \right)^{0.6089}\) | ||
\(b_{Compression}\) | - | - | 81,000 t/year | |
\(\tau_{i}\) | 15 years | |||
\(c^{{{\text{Maintenance}}}}\)\(\left( {c_{Compression}^{{{\text{CAPEX}}}} } \right)\) | 4% | |||
Losses | 1.96 kWh/kg | |||
\(a_{Compression}^{{{\text{Electricity}}}}\) | 0.5% | |||
Transport | \(c_{Transport}^{{{\text{CAPEX}}}}\) | \(p^{{{\text{Tractor}}}} :\) 160,000 € \(p^{{{\text{Trailer}}}}\): 860,000 € | \(292.152 *\) \(e^{{\left( {\frac{{0.0016 \cdot 250\;{\text{mm}}}}{{{\text{mm}}}}} \right)}} \cdot s_{pipeline}\) | \(p^{Tractor} :\) 160,000 € \(p^{Trailer}\): 550,000 € |
\(s_{Transport}\) | - | 100% new: 190 km 50% new: 95 km 0% new: 0 km | - | |
\(\tau_{i}\) | \(Tractor:\) 8 years \(Trailer\): 12 years | 40 years | \(Tractor:\) 8 years \(Trailer\): 12 years | |
\(c_{Transport}^{{{\text{Maintenance}}}}\)\(\left( {c_{Transport}^{{{\text{CAPEX}}}} } \right)\) | \(Tractor:\) 12% \(Trailer\): 2% | 5 €/m | \(Tractor:\) 12% \(Trailer\): 2% | |
\(a_{Transport}^{{{\text{Energy}}}}\) | Fuel: 30 l/100 km | Electricity: 0.82 kWh/kg | Fuel: 30 l/100 km | |
Losses | 1.65% | 0.5% | 0% | |
\(n\) | 25 | 1 | 155 | |
\(a_{Truck}^{{{\text{Driver}}}} \left( {r_{i} } \right)\) | 8 h/day | - | 8 h/day |
Appendix B:
Calculation of the case study
Configuration 1:







Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Ohmstede, K., Thies, C., Barke, A., Spengler, T.S. (2023). Evaluation of Hydrogen Supply Options for Sustainable Aviation. In: Buscher, U., Neufeld, J.S., Lasch, R., Schönberger, J. (eds) Logistics Management. LM 2023. Lecture Notes in Logistics. Springer, Cham. https://doi.org/10.1007/978-3-031-38145-4_2
Download citation
DOI: https://doi.org/10.1007/978-3-031-38145-4_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-38144-7
Online ISBN: 978-3-031-38145-4
eBook Packages: Economics and FinanceEconomics and Finance (R0)