Skip to main content

Evaluation of Hydrogen Supply Options for Sustainable Aviation

  • 246 Accesses

Part of the Lecture Notes in Logistics book series (LNLO)

Abstract

From an environmental perspective, green hydrogen is a promising alternative energy carrier for short-to middle-range flights. Furthermore, hydrogen produced from renewable energy releases no carbon dioxide emissions during production and use. Therefore, hydrogen is a potential solution for reducing aviation-related emissions. Besides, the economic competitiveness of hydrogen against conventional fuels, mainly influenced by the hydrogen supply chain design, will be a key determinant for future hydrogen deployment. The supply chain consists of production, compression, transportation, and liquefaction, but these components’ exact order, sizing, and location are still insecure. Different transport options exist, which are associated with various economic impacts during their purchase and use, as well as various supply chain configurations result in different overall expenses. We analyze demand and distance scenarios using an expense-oriented economic evaluation with CAPEX and OPEX to determine the best transport configuration. The total expenses of hydrogen are highly influenced by the expenses caused by energy and transport volume. Here, pipeline transportation is a promising option, as well as liquid hydrogen truck transportation in cryogenic tanks. It turns out that distance and demand for hydrogen strongly influence the choice of transportation.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • ADAC: Durchschnittlicher Preis für Diesel-Kraftstoff in Deutschland vom 7. Januar 2014 bis zum 27. September 2022 [Online], Statista. https://bit.ly/3EiRqWe. Accessed 8 Oct 2022

  • Atlas Copco (ed) (2021) Was kostet Stickstoff? [Online]. https://bit.ly/3AKymiX. Accessed 15 Sept 2022

  • Barke, A., Thies, C., Melo, S.P., Cerdas, F., Herrmann, C., Spengler, T.S.: Comparison of conventional and electric passenger aircraft for short-haul flights – a life cycle sustainability assessment. Procedia CIRP 105, 464–469 (2022)

    CrossRef  Google Scholar 

  • BDEW (2022) Industriestrompreise* (inklusive Stromsteuer) in Deutschland in den Jahren 1998 bis 2022 [Online], Statista

    Google Scholar 

  • Bhandari, R., Trudewind, C.A., Zapp, P.: Life cycle assessment of hydrogen production via electrolysis – a review. J. Clean. Prod. 85, 151–163 (2014)

    CrossRef  Google Scholar 

  • Boeing (ed): Commercial market outlook: 2022–2042 (2022). https://www.boeing.com/commercial/market/commercial-market-outlook/index.page. Accessed 15 Aug 2022

  • Bracha, M., Lorenz, G., Patzelt, A., Wanner, M.: Large-scale hydrogen liquefaction in Germany. Int. J. Hydrogen Energy 19(1), 53–59 (1994)

    Google Scholar 

  • Burgueño Salas, E.: Global air traffic - scheduled passengers 2004–2022 (2022). https://bit.ly/2rNTzVm. Accessed 29 Aug 2022

  • Cerniauskas, S., Jose Chavez Junco, A., Grube, T., Robinius, M., Stolten, D.: Options of natural gas pipeline reassignment for hydrogen: cost assessment for a Germany case study. Int. J. Hydrogen Energy 45(21), 12095–12107 (2020)

    Google Scholar 

  • Crittenden, M.: Ultralight batteries for electric airplanes. IEEE Spectr. 57(9), 44–49 (2020)

    CrossRef  Google Scholar 

  • Deutsche Bundesbank (ed): Euro-Referenzkurs der EZB / 1 EUR = … USD / Vereinigte Staaten (2022a). https://bit.ly/3Go7hpl. Accessed 17 Nov 2022a

  • Deutsche Bundesbank (ed): Euro-Referenzkurse der Europäischen Zentralbank: Jahresendstände und –durchschnitte (2022b). https://bit.ly/3AmOg2w. Accessed 17 Nov 2022b

  • European Commission, Directorate-General for Mobility and Transport and Directorate-General for Research and Innovation: Flightpath 2050: Europe’s vision for aviation: maintaining global leadership and serving society’s needs, Publications Office (2011)

    Google Scholar 

  • Eurostat: trompreise nach Art des Benutzers (2021). https://bit.ly/3Ol66cc. Accessed 22 Jul 2022

  • Farokhi, S.: Future Propulsion Systems and Energy Sources in Sustainable Aviation. Wiley (2019)

    Google Scholar 

  • Graver, B., Rutherford, D., Zheng, S.: CO2 Emissions from commercial aviation: 2013, 2018 and 2019 [Online], International Council on Clean Transportation, Washington DC (2020)

    Google Scholar 

  • Guo, Y., Li, G., Zhou, J., Liu, Y.: Comparison between hydrogen production by alkaline water electrolysis and hydrogen production by PEM electrolysis. IOP Conf. Ser. Earth Environ. Sci. 371(4), 42022 (2019)

    CrossRef  Google Scholar 

  • Hoelzen, J., Flohr, M., Silberhorn, D., Mangold, J., Bensmann, A., Hanke-Rauschenbach, R.: H2-powered aviation at airports – design and economics of LH2 refueling systems. Energy Convers. Manage. X 14, 100206 (2022)

    Google Scholar 

  • Jungbluth, N., Meili, C.: Recommendations for calculation of the global warming potential of aviation including the radiative forcing index. Int. J. Life Cycle Assess. 24(3), 404–411 (2018). https://doi.org/10.1007/s11367-018-1556-3

    CrossRef  Google Scholar 

  • Kayfeci, M., Keçebaş, A., Bayat, M.: Hydrogen production. In: Solar Hydrogen Production, pp. 45–83. Elsevier (2019)

    Google Scholar 

  • Klell, M., Eichlseder, H., nd Trattner, A.: Wasserstoff in der Fahrzeugtechnik, Wiesbaden. Springer Fachmedien Wiesbaden (2018). https://doi.org/10.1007/978-3-658-20447-1

  • Komarov, I.I., Rogalev, A.N., Kharlamova, D.M., Yu Naumov, V., Shabalova, S.I.: Comparative analysis of the efficiency of using hydrogen and steam methane reforming storage at combined cycle gas turbine for cogeneration. J. Phys. Conf. Ser. 2053(1), 12007 (2021)

    CrossRef  Google Scholar 

  • Kords, M.: Anteil der Verkehrsträger an den weltweiten CO2-Emissionen aus der Verbrennung fossiler Brennstoffe in den Jahren 2018 und 2019, IEA (2022). https://bit.ly/2ItYc0z. Accessed 15 Aug 2022

  • Lee, D.S., et al.: The contribution of global aviation to anthropogenic climate forcing for 2000 to 2018. Atmos. Environ. (Oxford, England: 1994) 244, 117834 (2021)

    Google Scholar 

  • LeValley, T.L., Richard, A.R., Fan, M.: The progress in water gas shift and steam reforming hydrogen production technologies – a review. Int. J. Hydrogen Energy 39(30), 16983–17000 (2014)

    CrossRef  Google Scholar 

  • Mayer, T., Semmel, M., Guerrero Morales, M.A., Schmidt, K.M., Bauer, A., Wind, J.: Techno-economic evaluation of hydrogen refueling stations with liquid or gaseous stored hydrogen. Int. J. Hydrogen Energy 44(47), 25809–25833 (2019)

    Google Scholar 

  • Milewski, J., Guandalini, G., Campanari, S.: Modeling an alkaline electrolysis cell through reduced-order and loss-estimate approaches. J. Power Sources 269, 203–211 (2014)

    CrossRef  Google Scholar 

  • Mischner, J., Fasold, H.-G., Kadner, K.: Gas2energy.net: Systemplanerische Grundlagen der Gasversorgung, Deutscher Industrieverlag (2011)

    Google Scholar 

  • Newborough, M., Cooley, G.: Developments in the global hydrogen market: the spectrum of hydrogen colours. Fuel Cells Bull. 2020(11), 16–22 (2020)

    CrossRef  Google Scholar 

  • Niermann, M., Timmerberg, S., Drünert, S., Kaltschmitt, M.: Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen. Renew. Sustain. Energy Rev. 135, 110171 (2021)

    CrossRef  Google Scholar 

  • Ponater, M., Marquardt, L., Ström, K., Gierens, R., Sausen, R.: On the potential of the cryoplane technology to reduce aircraft climate impact [Online], Friedrichshafen, DLR-Institut für Physik der Atmosphäre (2003). https://bit.ly/3X7kBnP. Accessed 11 Nov 2022

  • Pornet, C., Isikveren, A.T.: Conceptual design of hybrid-electric transport aircraft. Prog. Aerosp. Sci. 79, 114–135 (2015)

    CrossRef  Google Scholar 

  • Reuß, M., Grube, T., Robinius, M., Preuster, P., Wasserscheid, P., Stolten, D.: Seasonal storage and alternative carriers: a flexible hydrogen supply chain model. Appl. Energy 200, 290–302 (2017)

    CrossRef  Google Scholar 

  • Reuß, M., Grube, T., Robinius, M., Stolten, D.: A hydrogen supply chain with spatial resolution: comparative analysis of infrastructure technologies in Germany. Appl. Energy 247, 438–453 (2019)

    CrossRef  Google Scholar 

  • Rogelj, J., Shindell, D., Jiang, K.: Mitigation pathways compatible with 1.5°C in the context of sustainable development [Online]. IPCC (2018). https://www.ipcc.ch/sr15/chapter/chapter-2/. Accessed 29 Aug 2022

  • Sánchez-Bastardo, N., Schlögl, R., Ruland, H.: Methane pyrolysis for zero-emission hydrogen production: a potential bridge technology from fossil fuels to a renewable and sustainable hydrogen economy. Ind. Eng. Chem. Res. 60(32), 11855–11881 (2021)

    CrossRef  Google Scholar 

  • Teichmann, D., Arlt, W., Wasserscheid, P.: Liquid organic hydrogen carriers as an efficient vector for the transport and storage of renewable energy. Int. J. Hydrogen Energy 37(23), 18118–18132 (2012)

    CrossRef  Google Scholar 

  • Töpler, J., Lehmann, J.: Wasserstoff und Brennstoffzelle, Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-53360-4

  • Ulleberg, Ø., Hancke, R.: Techno-economic calculations of small-scale hydrogen supply systems for zero emission transport in Norway. Int. J. Hydrogen Energy 45(2), 1201–1211 (2020)

    CrossRef  Google Scholar 

  • Verstraete, D.: The Potential of Liquid Hydrogen for long range aircraft propulsion (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen Ohmstede .

Editor information

Editors and Affiliations

Appendix

Appendix

Appendix A:

Parametrization of the three supply chain configurations

Stage \({\varvec{i}}\)

Parameter

Configuration 1

Configuration 2

Configuration 3

Prices

\(p^{{{\text{Electricity}}}}\)

0.2664 €/kWh

\(p^{{{\text{Nitrogen}}}}\)

0.2 – 0.35 €/l

\(p^{{{\text{Fuel}}}}\)

2 €/l

\(p^{{{\text{Driver}}}}\)

35 €/h

Liquefaction

\(c_{Liquefaction}^{{{\text{CAPEX}}}}\)

105 million\( \left( {\frac{{b_{Liquefaction} }}{50\,t/day}} \right)^{0.66}\)

\(b_{Liquefaction}\)

83,000 t/year

82,000 t/year

82,000 t/year

\(\tau_{i}\)

20 years

\(c^{{{\text{Maintenance}}}}\)\(\left( {c_{Liquefaction}^{{{\text{CAPEX}}}} } \right)\)

4%

Losses

1.65%

\(a_{Liquefaction}^{{{\text{Nitrogen}}}}\)

100,000 l/year

\(a_{Liquefaction}^{{{\text{Electricity}}}}\)

6.78 kWh/kg

Compression

\(c_{Compression}^{{{\text{CAPEX}}}}\)

15,000 €\(\left( {\frac{{b_{compression} }}{1\,kW}} \right)^{0.6089}\)

\(b_{Compression}\)

-

-

81,000 t/year

\(\tau_{i}\)

15 years

\(c^{{{\text{Maintenance}}}}\)\(\left( {c_{Compression}^{{{\text{CAPEX}}}} } \right)\)

4%

Losses

1.96 kWh/kg

\(a_{Compression}^{{{\text{Electricity}}}}\)

0.5%

Transport

\(c_{Transport}^{{{\text{CAPEX}}}}\)

\(p^{{{\text{Tractor}}}} :\) 160,000 €

\(p^{{{\text{Trailer}}}}\): 860,000 €

\(292.152 *\)

\(e^{{\left( {\frac{{0.0016 \cdot 250\;{\text{mm}}}}{{{\text{mm}}}}} \right)}} \cdot s_{pipeline}\)

\(p^{Tractor} :\) 160,000 €

\(p^{Trailer}\): 550,000 €

\(s_{Transport}\)

-

100% new: 190 km

50% new: 95 km

0% new: 0 km

-

\(\tau_{i}\)

\(Tractor:\) 8 years

\(Trailer\): 12 years

40 years

\(Tractor:\) 8 years

\(Trailer\): 12 years

\(c_{Transport}^{{{\text{Maintenance}}}}\)\(\left( {c_{Transport}^{{{\text{CAPEX}}}} } \right)\)

\(Tractor:\) 12%

\(Trailer\): 2%

5 €/m

\(Tractor:\) 12%

\(Trailer\): 2%

\(a_{Transport}^{{{\text{Energy}}}}\)

Fuel: 30 l/100 km

Electricity:

0.82 kWh/kg

Fuel: 30 l/100 km

Losses

1.65%

0.5%

0%

\(n\)

25

1

155

\(a_{Truck}^{{{\text{Driver}}}} \left( {r_{i} } \right)\)

8 h/day

-

8 h/day

Appendix B:

Calculation of the case study

Configuration 1:

$$ x_{Liquefaction} = {\text{80,600,000}}\;{\text{kg}} \cdot 1.65 \% \cdot 1.65\% = {\text{83,281,743.4}}\;{\text{kg}} $$
(3)
(4)
(2)
$$ x_{Liquefaction} = {\text {80,600,000}}\;{\text{kg}} \cdot 1.65 \% = {\text{82,125,000}}\;{\text{kg}} $$
$$ n = \frac{{{\text{82,125,000}}\;{\text{kg}}}}{{{\text{4,500}}\;{\text{kg}} \cdot \left( {2\frac{tours}{{day}} \cdot 365\frac{days}{{year}}} \right)}} = 25 $$
(7)
(8)
(2)
(1)

Rights and permissions

Reprints and Permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ohmstede, K., Thies, C., Barke, A., Spengler, T.S. (2023). Evaluation of Hydrogen Supply Options for Sustainable Aviation. In: Buscher, U., Neufeld, J.S., Lasch, R., Schönberger, J. (eds) Logistics Management. LM 2023. Lecture Notes in Logistics. Springer, Cham. https://doi.org/10.1007/978-3-031-38145-4_2

Download citation