Skip to main content

ESSL-Polyp: A Robust Framework of Ensemble Semi-supervised Learning in Polyp Segmentation

  • Conference paper
  • First Online:
Intelligent Computing (SAI 2023)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 739))

Included in the following conference series:

  • 542 Accesses

Abstract

We propose a robust framework called ESSL-Polyp combining ensemble and semi-supervised learning to improve polyp segmentation accuracy. The intuition starts from our previous experiments with semi-supervised learning on polyp segmentation. Following that, the semi-supervised models usually generalize better than supervised models with the same amount of training data, especially in out-of-domain datasets. In this paper, instead of using all labeled data, we split it into k-fold sub-datasets with labeled and unlabeled parts to train corresponding semi-supervised models. The ensemble of semi-supervised models is utilized to generate final precise predictions. We achieve an average of 0.8557 Dice score on five popular benchmark datasets, including Kvarsir, CVC-ClinicDB, ETIS-LaribPolypDB, CVC-ColonDB, and CVC-300. Meanwhile, the supervised baseline using the same training dataset only has an average Dice score of 0.8264. Our method especially yields superior performance compared to the supervised approach in out-of-domain datasets such as ETIS-LaribPolypDB, CVC-ColonDB, and CVC-300. The source code and pre-trained models are available at https://sal.vn/essl-polyp.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)

    Google Scholar 

  2. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

  3. Chaitanya, K., Karani, N., Baumgartner, C.F., Erdil, E., Becker, A., Donati, O., Konukoglu, E.: Semi-supervised task-driven data augmentation for medical image segmentation. Med. Image Anal. 68, 101934 (2021)

    Article  Google Scholar 

  4. Van Engelen, J.E., Hoos, H.H.: A survey on semi-supervised learning. Mach. Learn. 109(2), 373–440 (2020)

    Google Scholar 

  5. Sohn, K., et al.: Fixmatch: simplifying semi-supervised learning with consistency and confidence. In: Advances in Neural Information Processing Systems, vol. 33, pp. 596–608 (2020)

    Google Scholar 

  6. Zhang, B., et al.: Flexmatch: boosting semi-supervised learning with curriculum pseudo labeling. Adv. Neural. Inf. Process. Syst. 34, 18408–18419 (2021)

    Google Scholar 

  7. Krogh, A., Vedelsby, J.: Neural network ensembles, cross validation, and active learning. In: Advances in Neural Information Processing Systems, vol. 7 (1994)

    Google Scholar 

  8. Quinlan, J.R.: Bagging, boosting, and C4. 5. In: AAAI/IAAI, vol. 1, pp. 725–730 (1996)

    Google Scholar 

  9. Freund, Y., Schapire, R.E.: Experiments with a new boosting algorithm. In: ICML, vol. 96 (1996)

    Google Scholar 

  10. Huang, C.-H., Wu, H.-Y., Lin, Y.-L.: Hardnet-MSEG: a simple encoder-decoder polyp segmentation neural network that achieves over 0.9 mean dice and 86 fps. arXiv preprint arXiv:2101.07172 (2021)

  11. Zhang, Y., Liu, H., Hu, Q.: TransFuse: fusing transformers and CNNs for medical image segmentation. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12901, pp. 14–24. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87193-2_2

    Chapter  Google Scholar 

  12. Duc, N.T., Oanh, N.T., Thuy, N.T., Triet, T.M., Dinh, V.S.: Colonformer: an efficient transformer based method for colon polyp segmentation. IEEE Access. 10, 80575–80586 (2022)

    Google Scholar 

  13. Zhang, Y., Gong, Z., Zheng, X., Zhao, X., Yao, W.: Semi-supervision semantic segmentation with uncertainty-guided self cross supervision. arXiv preprint arXiv:2203.05118 (2022)

  14. Li, Y., Data, G.W.P., Fu, Y., Hu, Y., Prisacariu, V.A.: Few-shot Semantic Segmentation with Self-supervision from Pseudo-classes. arXiv preprint arXiv:2110.11742 (2021)

  15. Wang, Y., et al.: Semi-Supervised semantic segmentation using unreliable pseudo-labels. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4248-4257 (2022)

    Google Scholar 

  16. Van, T.P., et al.: Online pseudo labeling for polyp segmentation with momentum networks. arXiv preprint arXiv:2209.14599 (2022)

  17. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 618–626 (2017)

    Google Scholar 

  18. Rokach, L.: Ensemble-based classifiers. Artif. Intell. Rev. 33(1), 1–39 (2010)

    Article  MathSciNet  Google Scholar 

  19. Iandola, F., Moskewicz, M., Karayev, S., Girshick, R., Darrell, T., Keutzer, K.: Densenet: implementing efficient convnet descriptor pyramids. arXiv preprint arXiv:1404.1869 (2014)

  20. Zhou, Z., Siddiquee, M.M.R., Tajbakhsh, N., Liang, J.: Unet++: redesigning skip connections to exploit multiscale features in image segmentation. IEEE Trans. Med. Imaging 39(6), 1856–1867 (2019)

    Article  Google Scholar 

  21. Fang, Y., Chen, C., Yuan, Y., Tong, K.: Selective feature aggregation network with area-boundary constraints for polyp segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11764, pp. 302–310. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32239-7_34

    Chapter  Google Scholar 

  22. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  23. Fan, D.-P., et al.: PraNet: parallel reverse attention network for polyp segmentation. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12266, pp. 263–273. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59725-2_26

    Chapter  Google Scholar 

  24. Zhao, X., Zhang, L., Lu, H.: Automatic polyp segmentation via multi-scale subtraction network. In: de Bruijne, M., Cattin, P.C., Cotin, S., Padoy, N., Speidel, S., Zheng, Y., Essert, C. (eds.) MICCAI 2021. LNCS, vol. 12901, pp. 120–130. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87193-2_12

    Chapter  Google Scholar 

  25. Wei, J., Hu, Y., Zhang, R., Li, Z., Zhou, S.K., Cui, S.: Shallow attention network for polyp segmentation. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12901, pp. 699–708. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87193-2_66

    Chapter  Google Scholar 

  26. Jha, D., et al.: Kvasir-SEG: a segmented polyp dataset. In: Ro, Y.M., et al. (eds.) MMM 2020. LNCS, vol. 11962, pp. 451–462. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-37734-2_37

    Chapter  Google Scholar 

  27. Bernal, J.F., et al.: WM-DOVA maps for accurate polyp highlighting in colonoscopy: Validation vs. saliency maps from physicians. Comput. Med. Imaging Graph. 43, 99–111 (2015)

    Google Scholar 

  28. Tajbakhsh, N., Gurudu, S.R., Liang, J.: Automated polyp detection in colonoscopy videos using shape and context information. IEEE Trans. Med. Imaging 35(2), 630–644 (2015)

    Article  Google Scholar 

  29. Vázquez, D., et al.: A benchmark for endoluminal scene segmentation of colonoscopy images. J. Healthcare Eng. 2017 (2017)

    Google Scholar 

  30. Silva, J., Histace, A., Romain, O., Dray, X., Granado, B.: Toward embedded detection of polyps in WCE images for early diagnosis of colorectal cancer. Int. J. Comput. Assist. Radiol. Surg. 9(2), 283–293 (2014)

    Article  Google Scholar 

Download references

Acknowledgment

The project described in this paper was funded by Vingroup Innovation Foundation (VINIF) under project code VINIF.2020.DA17. Additionally, this work received partial support from Sun-Asterisk Inc. The authors express their gratitude to their colleagues at Sun-Asterisk Inc for their valuable advice and expertise, which proved to be instrumental in the successful completion of this experiment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang Dinh Viet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Van, T.P., Viet, S.D. (2023). ESSL-Polyp: A Robust Framework of Ensemble Semi-supervised Learning in Polyp Segmentation. In: Arai, K. (eds) Intelligent Computing. SAI 2023. Lecture Notes in Networks and Systems, vol 739. Springer, Cham. https://doi.org/10.1007/978-3-031-37963-5_4

Download citation

Publish with us

Policies and ethics