Skip to main content

Circ RNA Based Classification of SARS CoV-2, SARS CoV-1 and MERS-CoV Using Machine Learning

  • Conference paper
  • First Online:
Advances in Computing and Data Sciences (ICACDS 2023)

Abstract

The SARS-CoV-2 virus has demonstrated its ability to adapt and spread in various environments, making it a challenging target for identification and prediction. While current studies in the field concentrates on utilization of transcriptome sequence classification to identify the virus, circular RNAs (circRNAs) have shown potential as a diagnostic marker for viral diseases. These single-stranded, covalently closed RNA molecules possess unique features such as RNA binding capacity and expression regulation, making it a promising source for potential biomarkers to create a new classification model. In this study, we propose a circRNA-based classification model utilizing the dna2vec algorithm to extract distributed representations of variable-length k-mers, combined with classical machine learning algorithms. The results demonstrate superior performance of the model, with Random Forest classifier achieving an accuracy of 99.99%, highlighting the efficacy of circRNA-based classification for SARS-CoV-2 identification and the potential of circRNAs as diagnostic markers for viral diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Metsky, H.C., Freije, C.A., Kosoko-Thoroddsen, T.-S.F., Sabeti, P.C., Myhrvold, C.: CRISPR-based surveillance for COVID-19 using genomically-comprehensive machine learning design (2020). https://doi.org/10.1101/2020.02.26.967026

  2. Xie, H., et al.: The role of circular RNAs in viral infection and related diseases. Virus Res. 291, 198205 (2021). https://doi.org/10.1016/j.virusres.2020.198205

    Article  Google Scholar 

  3. Avilala, J., et al.: Role of virally encoded circular RNAs in the pathogenicity of human oncogenic viruses. Front. Microbiol. 12, 657036 (2021). https://doi.org/10.3389/fmicb.2021.657036

    Article  Google Scholar 

  4. Li, H., Durbin, R.: Fast and accurate short read alignment with burrows-wheeler transform. Bioinformatics 25(14), 1754–1760 (2009). https://doi.org/10.1093/bioinformatics/btp324

    Article  Google Scholar 

  5. Zielezinski, A., Vinga, S., Almeida, J., Karlowski, W.M.: Alignment-free sequence comparison: benefits, applications, and tools. Genome Biol. 18(1), 1–17 (2017). https://doi.org/10.1186/s13059-017-1319-7

    Article  Google Scholar 

  6. Zeng, H., Edwards, M.D., Liu, G., Gifford, D.K.: Convolutional neural network architectures for predicting DNA-protein binding. Bioinformatics 32(12), i121–i127 (2016). https://doi.org/10.1093/bioinformatics/btw255

    Article  Google Scholar 

  7. Randhawa, G.S., Hill, K.A., Kari, L.: MLDSP-GUI: An alignment-free standalone tool with an interactive graphical user interface for DNA sequence comparison and analysis. Bioinformatics 36(7), 2258–2259 (2020). https://doi.org/10.1093/bioinformatics/btz918

    Article  Google Scholar 

  8. Mikolov, T., Corrado, G., Chen, K., Dean, J.: Efficient estimation of word representations in vector space. In: Proceedings of the International Conference on Learning Representations (ICLR 2013), pp. 1–12 (2013)

    Google Scholar 

  9. Kwan, H., Arniker, S.: Numerical representation of DNA sequences, pp. 307–310 (2009). https://doi.org/10.1109/EIT.2009.5189632

  10. Rizzo, R., Fiannaca, A., La Rosa, M., Urso, A.: A deep learning approach to DNA sequence classification. In: Angelini, C., Rancoita, P.M.V., Rovetta, S. (eds.) CIBB 2015. LNCS, vol. 9874, pp. 129–140. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44332-4_10

    Chapter  Google Scholar 

  11. Asgari, E., Mofrad, M.: Continuous distributed representation of biological sequences for deep proteomics and genomics. PLoS ONE 10, e0141287 (2015). https://doi.org/10.1371/journal.pone.0141287

    Article  Google Scholar 

  12. Kimothi, D., et al.: Distributed representations for biological sequence analysis (2016). ArXiv abs/1608.05949

    Google Scholar 

  13. Ng, P.: dna2vec: consistent vector representations of variable-length k-mers (2017) arXiv preprint. arXiv:1701.06279

  14. Lopez-Rincon, A., Tonda, A., Mendoza-Maldonado, L., et al.: Classification and specific primer design for accurate detection of SARS-CoV-2 using deep learning. Sci. Rep. 11, 947 (2021). https://doi.org/10.1038/s41598-020-80363-5

    Article  Google Scholar 

  15. Zhang, J., Chen, Q., Liu, B.: DeepDRBP-2L: a new genome annotation predictor for identifying DNA binding proteins and RNA binding proteins using convolutional neural network and long short-term memory. IEEE/ACM Trans. Comput. Biol. Bioinf. 18, 1454–1463 (2019). https://doi.org/10.1109/TCBB.2019.2952338

    Article  Google Scholar 

  16. Whata, A., Chimedza, C.: Deep learning for SARS COV-2 genome sequences. IEEE Access 9, 59597–59611 (2021). https://doi.org/10.1109/ACCESS.2021.3073728

    Article  Google Scholar 

  17. Saha, I., Ghosh, N., Maity, D., Seal, A., Plewczynski, D.: COVID-DeepPredictor: recurrent neural network to predict SARS-CoV-2 and other pathogenic viruses. Front. Genet. 12, 569120 (2021). https://doi.org/10.3389/fgene.2021.569120

    Article  Google Scholar 

  18. Ganesan, S., Sachin Kumar, S., Soman, K.P.: Biological sequence embedding based classification for MERS and SARS. In: Singh, M., Tyagi, V., Gupta, P.K., Flusser, J., Ören, T., Sonawane, V.R. (eds.) ICACDS 2021. CCIS, vol. 1440, pp. 475–487. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-81462-5_43

    Chapter  Google Scholar 

  19. Ganesan, S., Kumar, S.S., Soman, K.P. Deep Learning Based NLP Embedding Approach for Biosequence Classification. In: Chbeir, R., Manolopoulos, Y., Prasath, R. (eds) Mining Intelligence and Knowledge Exploration. MIKE 2021. Lecture Notes in Computer Science, vol. 13119, pp. 161–173. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-21517-9_16

  20. Cai, Z., et al.: VirusCircBase: a database of virus circular RNAs. Brief. Bioinform. 22(2), 2182–2190 (2021). https://doi.org/10.1093/bib/bbaa052

    Article  MathSciNet  Google Scholar 

  21. Cai, Z., et al.: Identification and characterization of circRNAs encoded by MERS-CoV, SARS-CoV-1 and SARS-CoV-2. Brief. Bioinform. 22(2), 1297–1308 (2021). https://doi.org/10.1093/bib/bbaa334

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Vinayak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vinayak, M., Anandaram, H., Sachin Kumar, S., Soman, K.P. (2023). Circ RNA Based Classification of SARS CoV-2, SARS CoV-1 and MERS-CoV Using Machine Learning. In: Singh, M., Tyagi, V., Gupta, P., Flusser, J., Ören, T. (eds) Advances in Computing and Data Sciences. ICACDS 2023. Communications in Computer and Information Science, vol 1848. Springer, Cham. https://doi.org/10.1007/978-3-031-37940-6_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-37940-6_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-37939-0

  • Online ISBN: 978-3-031-37940-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics