Skip to main content
  • 129 Accesses

Abstract

While the previous chapters focused on enabling design automation techniques for Reconfigurable Field-Effect Transistors (RFETs)-based circuits, this chapter explores hardware security as an application using RFETs-based primitives. This chapter presents efficient and affordable Intellectual Property (IP) protection measures that can be realized using the reconfigurable properties of RFETs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This is assumed considering the fact that once the scenario of short circuit or open circuit is activated, irrespective of the previous state, the logic gate will be in one of the conditions as mentioned in Table 7.1.

  2. 2.

    This is because RFETs can have multi-independent terminals on a single channel as explained in Chap. 2.

  3. 3.

    Iddq testing measures the supply current of a chip (or a given module) in the quiescent state (i.e., when the circuit is not switching and inputs are held at static/constant values) to detect manufacturing and/or electrical defects.

  4. 4.

    It is to be noted that ITC-99 benchmark suite is more representative of the security community particularly in works related to logic locking compared to let us say EPFL benchmarks [AGD15].

References

  1. Sally Adee. “The hunt for the kill switch”. In: IEEE Spectrum 45.5 (2008), pp. 34–39.

    Google Scholar 

  2. Luca Amarú, Pierre-Emmanuel Gaillardon, and Giovanni De Micheli. “The EPFL combinational benchmark suite”. In: Proceedings of the 24th International Workshop on Logic & Synthesis (IWLS). 2015.

    Google Scholar 

  3. Y. Bi, P. E. Gaillardon, X. S. Hu, M. Niemier, J. S. Yuan, and Y. Jin. “Leveraging Emerging Technology for Hardware Security - Case Study on Silicon Nanowire FETs and Graphene SymFETs”. In: ATS. 2014.

    Google Scholar 

  4. Yu Bi, X. Sharon Hu, Yier Jin, Michael Niemier, Kaveh Shamsi, and Xunzhao Yin. “Enhancing Hardware Security with Emerging Transistor Technologies”. In: Proceedings of the 26th Edition on Great Lakes Symposium on VLSI. GLSVLSI ’16. Boston, Massachusetts, USA: ACM, 2016, pp. 305–310. https://doi.org/10.1145/2902961.2903041.

  5. Yu Bi, Kaveh Shamsi, Jiann-Shiun Yuan, Pierre-Emmanuel Gaillardon, Giovanni De Micheli, Xunzhao Yin, X Sharon Hu, Michael Niemier, and Yier Jin. “Emerging technology-based design of primitives for hardware security”. In: ACM Journal on Emerging Technologies in Computing Systems (JETC) 13.1 (2016), pp. 1–19.

    Google Scholar 

  6. A. Chakraborty, N. G. Jayasankaran, Y. Liu, J. Rajendran, O. Sinanoglu, A. Srivastava, Y. Xie, M. Yasin, and M. Zuzak. “Keynote: A Disquisition on Logic Locking”. In: IEEE Transactions on Computer- Aided Design of Integrated Circuits and Systems 39.10 (2020), pp. 1952–1972. https://doi.org/10.1109/TCAD.2019.2944586.

  7. A. Chen, X. S. Hu, Y. Jin, M. Niemier, and X. Yin. “Using emerging technologies for hardware security beyond PUFs”. In: 2016 Design, Automation Test in Europe Conference Exhibition (DATE). Mar. 2016, pp. 1544–1549.

    Google Scholar 

  8. Anup Kumar Das. “Design Methodologies for Reliable and Energy- Efficient Multiprocessor System”. PhD thesis. 2014.

    Google Scholar 

  9. K. Domanski. “Latch-up in FinFET technologies”. In: 2018 IEEE International Reliability Physics Symposium (IRPS). Mar. 2018, pp. 2C.4-1-2C.4–5. https://doi.org/10.1109/IRPS.2018.8353550.

  10. Edouard Giacomin and Pierre-Emmanuel Gaillardon. “Differential Power Analysis Mitigation Technique Using Three-Independent-Gate Field Effect Transistors”. In: IFIP/IEEE International Conference on Very Large Scale Integration (VLSI-SoC). 2018, pp. 107–112.

    Google Scholar 

  11. G. Gore, P. Cadareanu, E. Giacomin, and P. Gaillardon. “A Predictive Process Design Kit for Three-Independent-Gate Field-Effect Transistors”. In: 2019 IFIP/IEEE 27th International Conference on Very Large Scale Integration (VLSI-SoC). Oct. 2019, pp. 172–177. https://doi.org/10.1109/VLSI-SoC.2019.8920358.

  12. Y. Ji-Ren, I. Karlsson, and C. Svensson. “A true single-phase-clock dynamic CMOS circuit technique”. In: IEEE Journal of Solid-State Circuits 22.5 (Oct. 1987), pp. 899–901. https://doi.org/10.1109/JSSC.1987.1052831.

  13. Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk Lee, Chris Wilkerson, Konrad Lai, and Onur Mutlu. “Flipping bits in memory without accessing them: An experimental study of DRAM disturbance errors”. In: ACM SIGARCH Computer Architecture News 42.3 (2014), pp. 361–372.

    Google Scholar 

  14. Johann Knechtel. “Hardware Security For and Beyond CMOS Technology: An Overview on Fundamentals, Applications, and Challenges”. In: Proceedings of the 2020 International Symposium on Physical Design. ISPD ’20. Taipei, Taiwan: Association for Computing Machinery, 2020, pp. 75–86. https://doi.org/10.1145/3372780.3378175.

  15. Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael Schwarz, and Yuval Yarom. “Spectre Attacks: Exploiting Speculative Execution”. In: arXiv abs/ 1801.01203 (2018). arXiv: 1801.01203.

    Google Scholar 

  16. J. Knechtel, Satwik Patnaik, and Ozgur Sinanoglu. “Protect Your Chip Design Intellectual Property: An Overview”. In: Proc. Int. Conf. Omni-Layer Intelligent Systems (COINS). 2019, pp. 211–216. https://doi.org/10.1145/3312614.3312657.

  17. Hyung Ki Lee and Dong Sam Ha. “HOPE: an efficient parallel fault simulator for synchronous sequential circuits”. In: TCAD (1996).

    Google Scholar 

  18. Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom, and Mike Hamburg. “Meltdown”. In: ArXiv e-prints (Jan. 2018). arXiv: 1801.01207.

    Google Scholar 

  19. M. De Marchi, D. Sacchetto, S. Frache, J. Zhang, P. E. Gaillardon, Y. Leblebici, and G. De Micheli. “Polarity control in double-gate, gate-all-around vertically stacked silicon nanowire FETs”. In: 2012 International Electron Devices Meeting. Dec. 2012, pp. 8.4.1–8.4.4. https://doi.org/10.1109/IEDM.2012.6479004.

  20. J. T. McDonald, Y. C. Kim, T. R. Andel, M. A. Forbes, and J. McVicar. “Functional polymorphism for intellectual property protection”. In: HOST. 2016.

    Google Scholar 

  21. T Mikolajick, A Heinzig, J Trommer, T Baldauf, and W M Weber. “The RFET—a reconfigurable nanowire transistor and its application to novel electronic circuits and systems”. In: Semiconductor Science and Technology 32.4 (2017), p. 043001.

    Google Scholar 

  22. S. Patnaik, N. Rangarajan, J. Knechtel, O. Sinanoglu, and S. Rakheja. “Advancing Hardware Security Using Polymorphic and Stochastic Spin-Hall Effect Devices”. In: Proc. DATE. 2018, pp. 97–102. https://doi.org/10.23919/DATE.2018.8341986.

  23. Satwik Patnaik, Mohammed Ashraf, Johann Knechtel, and Ozgur Sinanoglu. “Raise your game for split manufacturing: Restoring the true functionality through BEOL”. In: 55th Design Automation Conference (DAC). 2018, pp. 1–6.

    Google Scholar 

  24. Satwik Patnaik, Johann Knechtel, Mohammed Ashraf, and Ozgur Sinanoglu. “Concerted wire lifting: Enabling secure and cost-effective split manufacturing”. In: 23rd Asia and South Pacific Design Automation Conference (ASP-DAC). 2018, pp. 251–258.

    Google Scholar 

  25. S. Rai, A. Rupani, P. Nath, and A. Kumar. “Hardware Watermarking Using Polymorphic Inverter Designs Based On Reconfigurable Nanotechnologies”. In: ISVLSI. 2019.

    Google Scholar 

  26. S. Rai, J. Trommer, M. Raitza, T. Mikolajick, W. M. Weber, and A. Kumar. “Designing Efficient Circuits Based on Runtime-Reconfigurable Field-Effect Transistors”. In: IEEE Transactions on Very Large Scale Integration (VLSI) Systems 27.3 (Mar. 2019), pp. 560–572. https://doi.org/10.1109/TVLSI.2018.2884646.

  27. J. Rajendran, R. Karri, J. B. Wendt, M. Potkonjak, N. McDonald, G. S. Rose, and B. Wysocki. “Nano Meets Security: Exploring Nanoelectronic Devices for Security Applications”. In: Proceedings of the IEEE 103.5 (May 2015), pp. 829–849. https://doi.org/10.1109/JPROC.2014.2387353.

  28. M. Rostami, F. Koushanfar, and R. Karri. “A Primer on Hardware Security: Models, Methods, and Metrics”. In: Proceedings of the IEEE (2014).

    Google Scholar 

  29. S. Rai, M. Raitza, and A. Kumar. “Technology mapping flow for emerging reconfigurable silicon nanowire transistors”. In: 2018 Design, Automation Test in Europe Conference Exhibition (DATE). Mar. 2018, pp. 767–772. https://doi.org/10.23919/DATE.2018.8342110.

  30. A. Rupani, S. Rai, and A. Kumar. “Exploiting Emerging Reconfigurable Technologies for Secure Devices”. In: Euromicro DSD. 2019.

    Google Scholar 

  31. Behnam Sedighi, Xiaobo Sharon Hu, Joseph J. Nahas, and Michael Niemier. “Nontraditional Computation Using Beyond-CMOS Tunneling Devices”. In: IEEE Journal on Emerging and Selected Topics in Circuits and Systems 4.4 (2014), pp. 438–449. https://doi.org/10.1109/JETCAS.2014.2361065.

  32. SEMI. Innovation is at risk as semiconductor equipment and materials industry loses up to $4 billion annually due to IP infringement. 2012.

    Google Scholar 

  33. Abhrajit Sengupta, Mohammed Nabeel, Johann Knechtel, and Ozgur Sinanoglu. “A New Paradigm in Split Manufacturing: Lock the FEOL, Unlock at the BEOL”. In: Design, Automation & Test in Europe Conference & Exhibition (DATE). 2019, pp. 414–419.

    Google Scholar 

  34. Kaveh Shamsi, Meng Li, Travis Meade, Zheng Zhao, David Z Pan, and Yier Jin. “AppSAT: Approximately deobfuscating integrated circuits”. In: IEEE International Symposium on Hardware Oriented Security and Trust (HOST). 2017, pp. 95–100.

    Google Scholar 

  35. Mohammad Mehdi Sharifi, Ramin Rajaei, Patsy Cadareanu, Pierre- Emmanuel Gaillardon, Yier Jin, Michael Niemier, and X Sharon Hu. “A novel TIGFET-based DFF design for improved resilience to power side-channel attacks”. In: Proceedings of the 23rd Conference on Design, Automation and Test in Europe. 2020, pp. 1253–1258.

    Google Scholar 

  36. Yuriy Shiyanovskii, F Wolff, Aravind Rajendran, C Papachristou, D Weyer, and W Clay. “Process reliability based trojans through NBTI and HCI effects”. In: 2010 NASA/ESA Conference on Adaptive Hardware and Systems. IEEE. 2010, pp. 215–222.

    Google Scholar 

  37. V. Simek and R. Ruzicka. “Reconfigurable Platform with Polymorphic Digital Gates and Partial Reconfiguration Feature”. In: European Modelling Symposium. 2014.

    Google Scholar 

  38. P. Subramanyan, S. Ray, and S. Malik. “Evaluating the security of logic encryption algorithms”. In: Proc. HOST. 2015, pp. 137–143. https://doi.org/10.1109/HST.2015.7140252.

  39. Vjekoslav Svilan, Tien-Min Chen, Kleanthes G Koniaris, and James B Burr. Method and system for latchup suppression. US Patent 7,786,756. Aug. 2010.

    Google Scholar 

  40. Jens Trommer, André Heinzig, Tim Baldauf, Stefan Slesazeck, Thomas Mikolajick, and Walter M. Weber. “Functionality-Enhanced Logic Gate Design Enabled by Symmetrical Reconfigurable Silicon Nanowire Transistors”. In: IEEE Transactions on Nanotechnology 14.4 (July 2015), pp. 689–698. https://doi.org/10.1109/TNANO.2015.2429893.

  41. Y. Wang, P. Chen, J. Hu, G. Li, and J. Rajendran. “The Cat and Mouse in Split Manufacturing”. In: IEEE Transactions on Very Large Scale Integration (VLSI) Systems 26.5 (2018), pp. 805–817. https://doi.org/10.1109/TVLSI.2017.2787754.

  42. Kan Xiao, Domenic Forte, Yier Jin, Ramesh Karri, Swarup Bhunia, and Mohammad Tehranipoor. “Hardware trojans: Lessons learned after one decade of research”. In: ACM Transactions on Design Automation of Electronic Systems (TODAES) 22.1 (2016), pp. 1–23.

    Google Scholar 

  43. Muhammad Yasin, Bodhisatwa Mazumdar, Jeyavijayan Rajendran, and Ozgur Sinanoglu. “Hardware Security and Trust: Logic Locking as a Design-for-Trust Solution”. In: The IoT Physical Layer: Design and Implementation. Ed. by Ibrahim (Abe) M. Elfadel and Mohammed Ismail. Cham: Springer International Publishing, 2019, pp. 353–373. https://doi.org/10.1007/978-3-319-93100-5_20.

  44. Jian Zhang, Xifan Tang, Pierre Emmanuel Gaillardon, and Giovanni De Micheli. “Configurable Circuits Featuring Dual-Threshold-Voltage Design With Three-Independent-Gate Silicon Nanowire FETs”. In: IEEE Transactions on Circuits and Systems I: Regular Papers 61.10 (Oct. 2014), pp. 2851–2861. https://doi.org/10.1109/TCSI.2014.2333675.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rai, S., Kumar, A. (2024). Polymorphic Primitives for Hardware Security. In: Design Automation and Applications for Emerging Reconfigurable Nanotechnologies. Springer, Cham. https://doi.org/10.1007/978-3-031-37924-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-37924-6_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-37923-9

  • Online ISBN: 978-3-031-37924-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics