Skip to main content
  • 140 Accesses

Abstract

Designing logic gates based on emerging technologies is necessary as they form the building block for digital design. It lays the foundation to enable EDA for the commercialization of such a technology. With the emergence of reconfigurable nanotechnology as one of the viable technology for future electronics, a crucial task is to formalize designs and topologies for various logic gates and circuits (Rai et al. (Emerging Reconfigurable Nanotechnologies: Can They Support Future Electronics? In: Proceedings of the International Conference on Computer-Aided Design. ICCAD ’18. San Diego, California: ACM, 13:1–13:8, 2018)).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    While such logic gates can be realized in CMOS, due to cascading of multiple transistors between the output and \(V_{dd}\), the larger logic gates are slower in CMOS implementation.

  2. 2.

    Done in collaboration with Michael Raitza of the group.

References

  1. L. Amarù, P. E. Gaillardon, and G. De Micheli. “Efficient arithmetic logic gates using double-gate silicon nanowire FETs”. In: 2013 IEEE 11th International New Circuits and Systems Conference (NEWCAS). June 2013, pp. 1–4. https://doi.org/10.1109/NEWCAS.2013.6573572.

  2. S. Blawid, D. L. M. de Andrade, S. Mothes, and M. Claus. “Performance Projections for a Reconfigurable Tunnel NanoFET”. In: IEEE Journal of the Electron Devices Society 5.6 (Nov. 2017), pp. 473–479. https://doi.org/10.1109/JEDS.2017.2756040.

  3. S. Bobba and G. De Micheli. “Layout Technique for Double-Gate Silicon Nanowire FETs With an Efficient Sea-of-Tiles Architecture”. In: IEEE Transactions on Very Large Scale Integration (VLSI) Systems 23.10 (Oct. 2015), pp. 2103–2115. https://doi.org/10.1109/TVLSI.2014.2358884.

  4. Pierre-Emmanuel Gaillardon, Luca Gaetano Amarù, Shashikanth Bobba, Michele De Marchi, Davide Sacchetto, Yusuf Leblebici, and Giovanni De Micheli. “Vertically-stacked Double-gate Nanowire FETs with Controllable Polarity: From Devices to Regular ASICs”. In: Proceedings of the Conference on Design, Automation and Test in Europe. DATE ’13. Grenoble, France: EDA Consortium, 2013, pp. 625–630.

    Google Scholar 

  5. Pierre-Emmanuel Gaillardon, Michele De Marchi, Luca Amarù, Shashikanth Bobba, Davide Sacchetto, Yusuf Leblebici, and Giovanni De Micheli. “Towards structured ASICs using polarity-tunable Si nanowire transistors”. In: Proceedings of the 50th Annual Design Automation Conference on - DAC ’13 (2013), p. 1. https://doi.org/10.1145/2463209.2488886.

  6. Pierre Emmanuel Gaillardon, Shashikanth Bobba, Michele De Marchi, Davide Sacchetto, and Giovanni De Micheli. “Nanowire systems: technology and design”. In: Philosophical Transactions of the Royal Society of London (2014).

    Google Scholar 

  7. P. E. Gaillardon, L. G. Amarù, and G. D. Micheli. “Unlocking Controllable-Polarity Transistors Opportunities by Exclusive-OR and Majority Logic Synthesis”. In: 2014 IEEE Computer Society Annual Symposium on VLSI. July 2014, pp. 403–405. https://doi.org/10.1109/ISVLSI.2014.107.

  8. G. Gore, P. Cadareanu, E. Giacomin, and P. Gaillardon. “A Predictive Process Design Kit for Three-Independent-Gate Field-Effect Transistors”. In: 2019 IFIP/IEEE 27th International Conference on Very Large Scale Integration (VLSI-SoC). Oct. 2019, pp. 172–177. https://doi.org/10.1109/VLSI-SoC.2019.8920358.

  9. M. De Marchi, D. Sacchetto, S. Frache, J. Zhang, P. E. Gaillardon, Y. Leblebici, and G. De Micheli. “Polarity control in double-gate, gate-all-around vertically stacked silicon nanowire FETs”. In: 2012 International Electron Devices Meeting. Dec. 2012, pp. 8.4.1–8.4.4. https://doi.org/10.1109/IEDM.2012.6479004.

  10. M. De Marchi, D. Sacchetto, J. Zhang, S. Frache, P. E. Gaillardon, Y. Leblebici, and G. De Micheli. “Top-down fabrication of gateall- around vertically stacked silicon nanowire fets with controllable polarity”. In: IEEE Transactions on Nanotechnology 13.6 (Nov. 2014), pp. 1029–1038. https://doi.org/10.1109/TNANO.2014.2363386.

  11. I. O’Connor, J. Liu, F. Gaffiot, F. Pregaldiny, C. Lallement, C. Maneux, J. Goguet, S. Fregonese, T. Zimmer, L. Anghel, T. Dang, and R. Leveugle. “CNTFET Modeling and Reconfigurable Logic- Circuit Design”. In: IEEE Transactions on Circuits and Systems I: Regular Papers 54.11 (Nov. 2007), pp. 2365–2379. https://doi.org/10.1109/TCSI.2007.907835.

  12. Ian O’Connor, Kotb Jabeur, Sébastien Le Beux, and David Navarro. “Ambipolar Independent Double Gate FET Logic”. In: Proceedings of the 2012 IEEE/ACM International Symposium on Nanoscale Architectures. NANOARCH ’12. Amsterdam, The Netherlands: ACM, 2012, pp. 61–68. https://doi.org/10.1145/2765491.2765504.

  13. M. Raitza, A. Kumar, M. Völp, D.Walter, J. Trommer, T. Mikolajick, and W. M. Weber. “Exploiting transistor-level reconfiguration to optimize combinational circuits”. In: Design, Automation Test in Europe Conference Exhibition (DATE), 2017. Mar. 2017, pp. 338–343. https://doi.org/10.23919/DATE.2017.7927013.

  14. S. Rai, A. Rupani, D. Walter, M. Raitza, A. Heinzig, T. Baldauf, J. Trommer, C. Mayr, W. M. Weber, and A. Kumar. “A physical synthesis flow for early technology evaluation of silicon nanowire based reconfigurable FETs”. In: 2018 Design, Automation Test in Europe Conference Exhibition (DATE). Mar. 2018, pp. 605–608. https://doi.org/10.23919/DATE.2018.8342080.

  15. Shubham Rai, Srivatsa Srinivasa, Patsy Cadareanu, Xunzhao Yin, Xiaobo Sharon Hu, Pierre-Emmanuel Gaillardon, Vijaykrishnan Narayanan, and Akash Kumar. “Emerging Reconfigurable Nanotechnologies: Can They Support Future Electronics?” In: Proceedings of the International Conference on Computer-Aided Design. ICCAD ’18. San Diego, California: ACM, 2018, 13:1–13:8. https://doi.org/10.1145/3240765.3243472.

  16. Giovanni V Resta, Tarun Agarwal, Dennis Lin, Iuliana P Radu, Francky Catthoor, Pierre-Emmanuel Gaillardon, and Giovanni De Micheli. “Scaling trends and performance evaluation of 2-dimensional polarity-controllable FETs”. In: Scientific Reports 7 (2017), p. 45556.

    Google Scholar 

  17. J. Romero-González and P. Gaillardon. “BCB Evaluation of High- Performance and Low-Leakage Three-Independent-Gate Field-Effect Transistors”. In: IEEE Journal on Exploratory Solid-State Computational Devices and Circuits 4.1 (June 2018), pp. 35–43. https://doi.org/10.1109/JXCDC.2018.2821638.

  18. S. Rai, M. Raitza, and A. Kumar. “Technology mapping flow for emerging reconfigurable silicon nanowire transistors”. In: 2018 Design, Automation Test in Europe Conference Exhibition (DATE). Mar. 2018, pp. 767–772. https://doi.org/10.23919/DATE.2018.8342110.

  19. M. Simon, J. Trommer, B. Liang, D. Fischer, T. Baldauf, M. B. Khan, A. Heinzig, M. Knaut, Y. M. Georgiev, A. Erbe, J. W. Bartha, T. Mikolaiick, and W. M. Weber. “A wired-AND transistor: Polarity controllable FET with multiple inputs”. In: 2018 76th Device Research Conference (DRC). June 2018, pp. 1–2. https://doi.org/10.1109/DRC.2018.8442159.

  20. Ivan Edward Sutherland, Robert F Sproull, and David F Harris. Logical effort: designing fast CMOS circuits. Morgan Kaufmann, 1999.

    Google Scholar 

  21. J. E. Stine, I. Castellanos, M. Wood, J. Henson, F. Love, W. R. Davis, P. D. Franzon, M. Bucher, S. Basavarajaiah, J. Oh, and R. Jenkal. “FreePDK: An Open-Source Variation-Aware Design Kit”. In: 2007 IEEE International Conference on Microelectronic Systems Education (MSE’07). June 2007, pp. 173–174. https://doi.org/10.1109/MSE.2007.44.

  22. Aaron Stillmaker, Zhibin Xiao, and Bevan Baas. “Toward more accurate scaling estimates of cmos circuits from 180 nm to 22 nm”. In: Technical Report ECE VCL 2011 4 VLSI Computation Lab, University of California,Davis ().

    Google Scholar 

  23. X. Tang, J. Zhang, P. Gaillardon, and G. De Micheli. “TSPC Flip- Flop circuit design with three-independent-gate silicon nanowire FETs”. In: 2014 IEEE International Symposium on Circuits and Systems (ISCAS). June 2014, pp. 1660–1663. https://doi.org/10.1109/ISCAS.2014.6865471.

  24. J. Trommer, A. Heinzig, S. Slesazeck, T. Mikolajick, and W. M. Weber. “Elementary Aspects for Circuit Implementation of Reconfigurable Nanowire Transistors”. In: IEEE Electron Device Letters 35.1 (Jan. 2014), pp. 141–143. https://doi.org/10.1109/LED.2013.2290555.

  25. Jens Trommer, André Heinzig, Tim Baldauf, Stefan Slesazeck, Thomas Mikolajick, and Walter M. Weber. “Functionality-Enhanced Logic Gate Design Enabled by Symmetrical Reconfigurable Silicon Nanowire Transistors”. In: IEEE Transactions on Nanotechnology 14.4 (July 2015), pp. 689–698. https://doi.org/10.1109/TNANO.2015.2429893.

  26. J. Trommer, A. Heinzig, T. Baldauf, T. Mikolajick, W. M. Weber, M. Raitza, and M. Völp. “Reconfigurable nanowire transistors with multiple independent gates for efficient and programmable combinational circuits”. In: 2016 Design, Automation Test in Europe Conference Exhibition (DATE). Mar. 2016, pp. 169–174.

    Google Scholar 

  27. J Trommer, A Heinzig, S Slesazeck, U Mühle, M Löffler, D Walter, C Mayr, T Mikolajick, and WM Weber. “Reconfigurable germanium transistors with low source-drain leakage for secure and energyefficient doping-free complementary circuits”. In: Device Research Conference (DRC), 2017 75th Annual. IEEE. 2017, pp. 1–2.

    Google Scholar 

  28. Jens Trommer, André Heinzig, Uwe Mühle, Markus Löffler, Annett Winzer, Paul M. Jordan, Jürgen Beister, Tim Baldauf, Marion Geidel, Barbara Adolphi, Ehrenfried Zschech, Thomas Mikolajick, and Walter M. Weber. “Enabling Energy Efficiency and Polarity Control in Germanium Nanowire Transistors by Individually Gated Nanojunctions”. In: ACS Nano 11.2 (2017). PMID: 28080025, pp. 1704–1711. https://doi.org/10.1021/acsnano.6b07531. eprint: http://doi.org/10.1021/acsnano.6b07531.

  29. Jens Trommer. Towards Reconfigurable Electronics by Functionality- Enhanced Circuits and Germanium Nanowire Devices. BoD–Books on Demand, 2017.

    Google Scholar 

  30. Ogun Turkyilmaz, Fabien Clermidy, Luca Gaetano Amaru, Pierre Emmanuel Gaillardon, and Giovanni De Micheli. “Self-checking ripple-carry adder with Ambipolar Silicon NanoWire FET”. In: Proceedings - IEEE International Symposium on Circuits and Systems (May 2013), pp. 2127–2130. https://doi.org/10.1109/ISCAS.2013.6572294.

  31. Wei Zhao and Yu Cao. “New generation of predictive technology model for sub-45nm design exploration”. In: ISQED. 2006.

    Google Scholar 

  32. J. Yuan and C. Svensson. “High-speed CMOS circuit technique”. In: JSSC (1989).

    Google Scholar 

  33. Jian Zhang, Pierre Emmanuel Gaillardon, and Giovanni De Micheli. “Dual-threshold-voltage configurable circuits with three-independentgate silicon nanowire FETs”. In: Proceedings - IEEE International Symposium on Circuits and Systems. May 2013, pp. 2111–2114. https://doi.org/10.1109/ISCAS.2013.6572291.

  34. Jian Zhang, Xifan Tang, Pierre Emmanuel Gaillardon, and Giovanni De Micheli. “Configurable Circuits Featuring Dual-Threshold-Voltage Design With Three-Independent-Gate Silicon Nanowire FETs”. In: IEEE Transactions on Circuits and Systems I: Regular Papers 61.10 (Oct. 2014), pp. 2851–2861. https://doi.org/10.1109/TCSI.2014.2333675.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rai, S., Kumar, A. (2024). Exploring Circuit Design Topologies for RFETs. In: Design Automation and Applications for Emerging Reconfigurable Nanotechnologies. Springer, Cham. https://doi.org/10.1007/978-3-031-37924-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-37924-6_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-37923-9

  • Online ISBN: 978-3-031-37924-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics