Skip to main content
  • 134 Accesses

Abstract

At the time, when I started writing this book, the iPhone 13 series was being launched. And the most striking thing, for me as a researcher, is that the new-generation iPhones have been able to shrink the CMOS channel width by yet another 2 nm. They used a 5-nm technology node which allowed them to use \(27\%\) more transistors than the previous generation. Still, this progression is not too far from the quintessential Moore’s law prediction (Moore et al. (Cramming more components onto integrated circuits, 1965)). Although area scaling continues roughly at the rate of 0.5 times every two years (Bohr and Young (IEEE Micro 37(6):20–29, 2017)), the cost to build transistors and the power consumption per unit transistor have not been able to follow the promises of Moore’s law and Dennard scaling methodology (Dennard et al. (IEEE J Solid-State Circ 9(5):256–268, 1974)). This trend has not been abrupt and Moore’s law that has been guiding and predicting transistor downsizing from the last five decades is really pushing the physical limits of the transistor’s channel width, as 1 nm is equivalent to the thickness of just 5 silicon atoms!

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Luca Amarú, Pierre-Emmanuel Gaillardon, and Giovanni De Micheli. “An Efficient Manipulation Package for Biconditional Binary Decision Diagrams”. In: Proceedings of the Conference on Design, Automation & Test in Europe. DATE ’14. Dresden, Germany: European Design and Automation Association, 2014, 296:1–296:6.

    Google Scholar 

  2. L. Amarù, P. E. Gaillardon, and G. De Micheli. “Efficient arithmetic logic gates using double-gate silicon nanowire FETs”. In: 2013 IEEE 11th International New Circuits and Systems Conference (NEWCAS). June 2013, pp. 1–4. https://doi.org/10.1109/NEWCAS.2013.6573572.

  3. L. Amarò, G. Hills, P. E. Gaillardon, S. Mitra, and G. De Micheli. “Multiple Independent Gate FETs: How many gates do we need?” In: The 20th Asia and South Pacific Design Automation Conference. IEEE, Jan. 2015, pp. 243–248. https://doi.org/10.1109/ASPDAC.2015.7059012.

  4. L. Amarú, P. E. Gaillardon, S. Mitra, and G. De Micheli. “New Logic Synthesis as Nanotechnology Enabler”. In: Proceedings of the IEEE 103.11 (Nov. 2015), pp. 2168–2195. https://doi.org/10.1109/JPROC.2015.2460377.

  5. Mohammad Khairul Bashar, Jaykumar Vaidya, R. S. Surya Kanthi, Chonghan Lee, Feng Shi, Vijaykrishnan Narayanan, and Nikhil Shukla. “Ferroelectric-Based Accelerators for Computationally Hard Problems”. In: Proceedings of the 2021 on Great Lakes Symposium on VLSI. New York, NY, USA: Association for Computing Machinery, 2021, pp. 485–489.

    Google Scholar 

  6. Abhiroop Bhattacharjee, Shubham Rai, Ansh Rupani, Michael Raitza, and Akash Kumar. “Metastability with Emerging Reconfigurable Transistors: Exploiting Ambipolarity for Throughput”. In: 2021 IFIP/IEEE 29th International Conference on Very Large Scale Integration (VLSI-SoC). 2021, pp. 1–6. https://doi.org/10.1109/VLSI-SoC53125.2021.9607015.

  7. Yu Bi, Pierre-Emmanuel Gaillardon, X Sharon Hu, Michael Niemier, Jiann-Shiun Yuan, and Yier Jin. “Polarity-Controllable Silicon NanoWire FET-Based Security”. In: Security Opportunities in Nano Devices and Emerging Technologies. CRC Press, 2017, pp. 165–178.

    Google Scholar 

  8. Robert Brayton and Alan Mishchenko. “ABC: An academic industrialstrength verification tool”. In: Computer Aided Verification. Springer. 2010.

    Google Scholar 

  9. S. Bobba and G. De Micheli. “Layout Technique for Double-Gate Silicon Nanowire FETs With an Efficient Sea-of-Tiles Architecture”. In: IEEE Transactions on Very Large Scale Integration (VLSI) Systems 23.10 (Oct. 2015), pp. 2103–2115. https://doi.org/10.1109/TVLSI.2014.2358884.

  10. Shekhar Borkar. “Electronics beyond nano-scale CMOS”. In: Proceedings of the 43rd annual Design Automation Conference. 2006, pp. 807–808.

    Google Scholar 

  11. Ahmet F. Budak, Zixuan Jiang, Keren Zhu, Azalia Mirhoseini, Anna Goldie, and David Z. Pan. “Reinforcement Learning for Electronic Design Automation: Case Studies and Perspectives: (Invited Paper)”. In: 2022 27th Asia and South Pacific Design Automation Conference (ASP-DAC). 2022, pp. 500–505. https://doi.org/10.1109/ASP-DAC52403.2022.9712578.

  12. Mark T Bohr and Ian A Young. “CMOS scaling trends and beyond”. In: IEEE Micro 37.6 (2017), pp. 20–29.

    Google Scholar 

  13. A. Chakraborty, N. G. Jayasankaran, Y. Liu, J. Rajendran, O. Sinanoglu, A. Srivastava, Y. Xie, M. Yasin, and M. Zuzak. “Keynote: A Disquisition on Logic Locking”. In: IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 39.10 (2020), pp. 1952–1972. https://doi.org/10.1109/TCAD.2019.2944586.

  14. Jason Cong, Chang Wu, and Yuzheng Ding. “Cut ranking and pruning: Enabling a general and efficient FPGA mapping solution”. In: Proceedings of the 1999 ACM/SIGDA seventh international symposium on Field programmable gate arrays. 1999, pp. 29–35.

    Google Scholar 

  15. R.H. Dennard, F.H. Gaensslen, Hwa-Nien Yu, V.L. Rideout, E. Bassous, and A.R. LeBlanc. “Design of ion-implanted MOSFET’s with very small physical dimensions”. In: IEEE Journal of Solid-State Circuits 9.5 (1974), pp. 256–268. https://doi.org/10.1109/JSSC.1974.1050511.

    Google Scholar 

  16. Andre DeHon and Michael J. Wilson. “Nanowire-based Sublithographic Programmable Logic Arrays”. In: Proceedings of the 2004 ACM/SIGDA 12th International Symposium on Field Programmable Gate Arrays. FPGA ’04. Monterey, California, USA: ACM, 2004, pp. 123–132. https://doi.org/10.1145/968280.968299.

  17. Pierre-Emmanuel Gaillardon, Michele De Marchi, Luca Amarù, Shashikanth Bobba, Davide Sacchetto, Yusuf Leblebici, and Giovanni De Micheli. “Towards structured ASICs using polarity-tunable Si nanowire transistors”. In: Proceedings of the 50th Annual Design Automation Conference on - DAC ’13 (2013), p. 1. https://doi.org/10.1145/2463209.2488886.

  18. Pierre Emmanuel Gaillardon, Xifan Tang, Gain Kim, and Giovanni De Micheli. “A Novel FPGA Architecture Based on Ultrafine Grain Reconfigurable Logic Cells”. In: IEEE Transactions on Very Large Scale Integration (VLSI) Systems 23.10 (Oct. 2015), pp. 2187–2197. https://doi.org/10.1109/TVLSI.2014.2359385.

  19. P. E. Gaillardon, L. G. Amarù, and G. D. Micheli. “Unlocking Controllable-Polarity Transistors Opportunities by Exclusive-OR and Majority Logic Synthesis”. In: 2014 IEEE Computer Society Annual Symposium on VLSI. July 2014, pp. 403–405. https://doi.org/10.1109/ISVLSI.2014.107.

  20. Giulio Galderisi, Thomas Mikolajick, and Jens Trommer. “Reconfigurable Field Effect Transistors Design Solutions for Delay-Invariant Logic Gates”. In: IEEE Embedded Systems Letters (2022), pp. 1–1. https://doi.org/10.1109/LES.2022.3144010.

  21. André Heinzig, Thomas Mikolajick, Jens Trommer, Daniel Grimm, and Walter M. Weber. “Dually Active Silicon Nanowire Transistors and Circuits with Equal Electron and Hole Transport”. In: Nano Letters 13.9 (2013). PMID: 23919720, pp. 4176–4181. https://doi.org/10.1021/nl401826u. eprint: https://dx.doi.org/10.1021/nl401826u.

  22. G. Hills, C. Lau, A. Wright, S. Fuller, M. D Bishop, T. Srimani, P. Kanhaiya, R. Ho, A Amer, Y Stein, et al. “Modern microprocessor built from complementary carbon nanotube transistors”. In: Nature (2019).

    Google Scholar 

  23. Paul Kocher, Joshua Jaffe, and Benjamin Jun. “Differential Power Analysis”. In: Advances in Cryptology. Springer. 1999, pp. 388–397.

    Google Scholar 

  24. Johann Knechtel. “Hardware Security For and Beyond CMOS Technology: An Overview on Fundamentals, Applications, and Challenges”. In: Proceedings of the 2020 International Symposium on Physical Design. New York, NY, USA: Association for Computing Machinery, 2020, pp. 75–86.

    Chapter  Google Scholar 

  25. Andreas Krinke, Shubham Rai, Akash Kumar, and Jens Lienig. “Exploring Physical Synthesis for Circuits based on Emerging Reconfigurable Nanotechnologies”. In: 2021 IEEE/ACM International Conference On Computer Aided Design (ICCAD). IEEE. 2021, pp. 1–9.

    Google Scholar 

  26. Mohamed El Massad, Jun Zhang, Siddharth Garg, and Mahesh V. Tripunitara. “Logic Locking for Secure Outsourced Chip Fabrication: A New Attack and Provably Secure Defense Mechanism”. In: CoRR abs/1703.10187 (2017).

    Google Scholar 

  27. Valavan Manohararajah, Stephen Dean Brown, and Zvonko G Vranesic. “Heuristics for area minimization in LUT-based FPGA technology mapping”. In: IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 25.11 (2006), pp. 2331–2340.

    Google Scholar 

  28. Giovanni De Micheli. Synthesis and optimization of digital circuits. 1st. McGraw-Hill, 1994, p. 579.

    Google Scholar 

  29. T Mikolajick, A Heinzig, J Trommer, T Baldauf, and W M Weber. “The RFET—a reconfigurable nanowire transistor and its application to novel electronic circuits and systems”. In: Semiconductor Science and Technology 32.4 (2017), p. 043001.

    Google Scholar 

  30. T Mikolajick, G Galderisi, M Simon, S Rai, A Kumar, A Heinzig, WM Weber, and J Trommer. “20 Years of reconfigurable field-effect transistors: From concepts to future applications”. In: Solid-State Electronics 186 (2021), p. 108036.

    Google Scholar 

  31. Gordon E Moore et al. Cramming more components onto integrated circuits. 1965.

    Google Scholar 

  32. Manish Pandey. “Machine learning and systems for building the next generation of EDA tools”. In: 2018 23rd Asia and South Pacific Design Automation Conference (ASP-DAC). 2018, pp. 411–415. https://doi.org/10.1109/ASPDAC.2018.8297358.

  33. Yasasvi V. Peruvemba, Shubham Rai, Kapil Ahuja, and Akash Kumar. “RL-Guided Runtime-Constrained Heuristic Exploration for Logic Synthesis”. In: 2021 IEEE/ACM International Conference On Computer Aided Design (ICCAD). 2021, pp. 1–9. https://doi.org/10.1109/ICCAD51958.2021.9643530.

  34. I P Radu, O Zografos, A Vaysset, J Yan, J Swerts, D Radisic, B Soree, M Manfrini, M Ercken, P Raghavan, S Sayan, C Adelmann, and A Thean. “Spintronic majority gates”. In: (), pp. 3–6.

    Google Scholar 

  35. M. Raitza, A. Kumar, M. Völp, D.Walter, J. Trommer, T. Mikolajick, and W. M. Weber. “Exploiting transistor-level reconfiguration to optimize combinational circuits”. In: Design, Automation Test in Europe Conference Exhibition (DATE), 2017. Mar. 2017, pp. 338–343. https://doi.org/10.23919/DATE.2017.7927013.

  36. S. Rai, A. Rupani, D. Walter, M. Raitza, A. Heinzig, T. Baldauf, J. Trommer, C. Mayr, W. M. Weber, and A. Kumar. “A physical synthesis flow for early technology evaluation of silicon nanowire based reconfigurable FETs”. In: 2018 Design, Automation Test in Europe Conference Exhibition (DATE). Mar. 2018, pp. 605–608. https://doi.org/10.23919/DATE.2018.8342080.

  37. Shubham Rai, Srivatsa Srinivasa, Patsy Cadareanu, Xunzhao Yin, Xiaobo Sharon Hu, Pierre-Emmanuel Gaillardon, Vijaykrishnan Narayanan, and Akash Kumar. “Emerging Reconfigurable Nanotechnologies: Can They Support Future Electronics?” In: Proceedings of the International Conference on Computer-Aided Design. ICCAD ’18. San Diego, California: ACM, 2018, 13:1–13:8. https://doi.org/10.1145/3240765.3243472.

  38. S. Rai, J. Trommer, M. Raitza, T. Mikolajick, W. M. Weber, and A. Kumar. “Designing Efficient Circuits Based on Runtime-Reconfigurable Field-Effect Transistors”. In: IEEE Transactions on Very Large Scale Integration (VLSI) Systems 27.3 (Mar. 2019), pp. 560–572. https://doi.org/10.1109/TVLSI.2018.2884646.

  39. S. Rai, M. Raitza, S.S. Sahoo, and A. Kumar. “DiSCERN: Distilling Standard-Cells for Emerging Reconfigurable Nanotechnologies”. In: DATE. 2020.

    Google Scholar 

  40. Shubham Rai, Satwik Patnaik, Ansh Rupani, Johann Knechtel, Ozgur Sinanoglu, and Akash Kumar. “Security Promises and Vulnerabilities in Emerging Reconfigurable Nanotechnology-Based Circuits”. In: IEEE Transactions on Emerging Topics in Computing (2020), pp. 1–1. https://doi.org/10.1109/TETC.2020.3039375.

  41. Shubham Rai, Heinz Riener, Giovanni De Micheli, and Akash Kumar. “XMG-based Logic Synthesis for Emerging Reconfigurable Nanotechnologies”. In: [Proceedings of the 29th International Workshop on Logic & Synthesis (IWLS 2020)]. CONF. 2020.

    Google Scholar 

  42. Shubham Rai, Mengyun Liu, Anteneh Gebregiorgis, Debjyoti Bhattacharjee, Krishnendu Chakrabarty, Said Hamdioui, Anupam Chattopadhyay, Jens Trommer, and Akash Kumar. “Perspectives on Emerging Computation-in-Memory Paradigms”. In: 2021 Design, Automation Test in Europe Conference Exhibition (DATE). 2021, pp. 1925–1934. https://doi.org/10.23919/DATE51398.2021.9473976.

  43. Shubham Rai, Walter Lau Neto, Yukio Miyasaka, Xinpei Zhang, Mingfei Yu, Qingyang Yi, Masahiro Fujita, Guilherme B. Manske, Matheus F. Pontes, Leomar S. da Rosa, Marilton S. de Aguiar, Paulo F. Butzen, Po-Chun Chien, Yu-Shan Huang, Hoa-Ren Wang, Jie-Hong R. Jiang, Jiaqi Gu, Zheng Zhao, Zixuan Jiang, David Z. Pan, Brunno A. de Abreu, Isac de Souza Campos, Augusto Berndt, Cristina Meinhardt, Jonata T. Carvalho, Mateus Grellert, Sergio Bampi, Aditya Lohana, Akash Kumar, Wei Zeng, Azadeh Davoodi, Rasit O. Topaloglu, Yuan Zhou, Jordan Dotzel, Yichi Zhang, Hanyu Wang, Zhiru Zhang, Valerio Tenace, Pierre-Emmanuel Gaillardon, Alan Mishchenko, and Satrajit Chatterjee. “Logic Synthesis Meets Machine Learning: Trading Exactness for Generalization”. In: 2021 Design, Automation Test in Europe Conference Exhibition (DATE). 2021, pp. 1026–1031. https://doi.org/10.23919/DATE51398.2021.9473972.

  44. Shubham Rai, Heinz Riener, Giovanni De Micheli, and Akash Kumar. “Preserving Self-Duality During Logic Synthesis for Emerging Reconfigurable Nanotechnologies”. In: 2021 Design, Automation Test in Europe Conference Exhibition (DATE). 2021, pp. 354–359. https://doi.org/10.23919/DATE51398.2021.9474112.

  45. J. Rajendran, R. Karri, J. B. Wendt, M. Potkonjak, N. McDonald, G. S. Rose, and B. Wysocki. “Nano Meets Security: Exploring Nanoelectronic Devices for Security Applications”. In: Proceedings of the IEEE 103.5 (May 2015), pp. 829–849. https://doi.org/10.1109/JPROC.2014.2387353.

  46. Maximilian Reuter, Johannes Pfau, Tillmann A. Krauss, Jü1rgen Becker, and Klaus Hofmann. “From MOSFETs to Ambipolar Transistors: Standard Cell Synthesis for the Planar RFET Technology”. In: IEEE Transactions on Circuits and Systems I: Regular Papers 68.1 (2021), pp. 114–125. https://doi.org/10.1109/TCSI.2020.3035889.

  47. S. Rai, M. Raitza, and A. Kumar. “Technology mapping flow for emerging reconfigurable silicon nanowire transistors”. In: 2018 Design, Automation Test in Europe Conference Exhibition (DATE). Mar. 2018, pp. 767–772. https://doi.org/10.23919/DATE.2018.8342110.

  48. A. Rupani, S. Rai, and A. Kumar. “Exploiting Emerging Reconfigurable Technologies for Secure Devices”. In: Euromicro DSD. 2019.

    Google Scholar 

  49. John Shalf. “The future of computing beyond Moore’s law”. In: Philosophical Transactions of the Royal Society A 378.2166 (2020), p. 20190061.

    Google Scholar 

  50. M. Simon, A. Heinzig, J. Trommer, T. Baldauf, T. Mikolajick, and W. M. Weber. “Bringing reconfigurable nanowire FETs to a logic circuits compatible process platform”. In: 2016 IEEE Nanotechnology Materials and Devices Conference (NMDC). Oct. 2016, pp. 1–3. https://doi.org/10.1109/NMDC.2016.7777085.

  51. M. Simon, J. Trommer, B. Liang, D. Fischer, T. Baldauf, M. B. Khan, A. Heinzig, M. Knaut, Y. M. Georgiev, A. Erbe, J. W. Bartha, T. Mikolaiick, and W. M. Weber. “A wired-AND transistor: Polarity controllable FET with multiple inputs”. In: 2018 76th Device Research Conference (DRC). June 2018, pp. 1–2. https://doi.org/10.1109/DRC.2018.8442159.

  52. Jens Trommer, André Heinzig, Tim Baldauf, Stefan Slesazeck, Thomas Mikolajick, and Walter M. Weber. “Functionality-Enhanced Logic Gate Design Enabled by Symmetrical Reconfigurable Silicon Nanowire Transistors”. In: IEEE Transactions on Nanotechnology 14.4 (July 2015), pp. 689–698. https://doi.org/10.1109/TNANO.2015.2429893.

  53. J. Trommer, A. Heinzig, T. Baldauf, T. Mikolajick, W. M. Weber, M. Raitza, and M. Völp. “Reconfigurable nanowire transistors with multiple independent gates for efficient and programmable combinational circuits”. In: 2016 Design, Automation Test in Europe Conference Exhibition (DATE). Mar. 2016, pp. 169–174.

    Google Scholar 

  54. Shimeng Yu and Pai-Yu Chen. “Emerging Memory Technologies: Recent Trends and Prospects”. In: IEEE Solid-State Circuits Magazine 8.2 (2016), pp. 43–56. https://doi.org/10.1109/MSSC.2016.2546199.

  55. Jian Zhang, Xifan Tang, Pierre Emmanuel Gaillardon, and Giovanni De Micheli. “Configurable Circuits Featuring Dual-Threshold-Voltage Design With Three-Independent-Gate Silicon Nanowire FETs”. In: IEEE Transactions on Circuits and Systems I: Regular Papers 61.10 (Oct. 2014), pp. 2851–2861. https://doi.org/10.1109/TCSI.2014.2333675.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rai, S., Kumar, A. (2024). Introduction. In: Design Automation and Applications for Emerging Reconfigurable Nanotechnologies. Springer, Cham. https://doi.org/10.1007/978-3-031-37924-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-37924-6_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-37923-9

  • Online ISBN: 978-3-031-37924-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics