Skip to main content

Waveform and Modulation Design of Terahertz Communications

  • Chapter
  • First Online:
Fundamentals of 6G Communications and Networking

Part of the book series: Signals and Communication Technology ((SCT))

  • 749 Accesses

Abstract

Terahertz (THz) communication is envisioned as a key technology for 6G, which is expected to support 1 Tbps peak data rate, 0.1 millisecond latency, millimeter-precision sensing and positioning, and end-to-end reliability in terms of packet error rates of 10–9. As a fundamental wireless infrastructure, the THz communication can boost abundant promising applications, including metaverse, THz wireless backhaul, and THz space networks, as well as other long-awaited novel communication paradigms. In light of the ongoing THz hardware and channel developments, efficient waveform and modulation technologies are investigated in this chapter, to make the most use of the THz spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. I. F. Akyildiz, C. Han, and S. Nie, “Combating the distance problem in the millimeter wave and terahertz frequency bands,” IEEE Communications Magazine, vol. 56, no. 6, pp. 102–108, 2018.

    Article  Google Scholar 

  2. I. F. Akyildiz, J. M. Jornet, and C. Han, “Terahertz band: Next frontier for wireless communications,” Physical Communication, vol. 12, pp. 16–32, 2014.

    Article  Google Scholar 

  3. T. S. Rappaport et al., “Wireless communications and applications above 100 ghz: Opportunities and challenges for 6g and beyond,” IEEE Access, vol. 7, pp. 78 729–78 757, 2019.

    Google Scholar 

  4. F. C. Commission, “Fcc takes steps to open spectrum horizons for new services and technologies.” [Online]. Available: https://docs.fcc.gov/public/attachments/DOC-356588A1.pdf

  5. WRC-19, “World radiocommunication conference 2019 (WRC-19) final acts.” [Online]. Available: https://www.itu.int/dms_pub/itu-r/opb/act/R-ACT-WRC.14-2019-PDF-E.pdf

  6. I. F. Akyildiz, C. Han, Z. Hu, S. Nie, and J. M. Jornet, “Terahertz band communication: An old problem revisited and research directions for the next decade,” IEEE Transactions on Communications, vol. 70, no. 6, pp. 4250–4285, 2022.

    Article  Google Scholar 

  7. T. W. Crowe, W. R. Deal, M. Schröter, C.-K. Clive Tzuang, and K. Wu, “Terahertz rf electronics and system integration,” Proceedings of the IEEE, vol. 105, no. 6, pp. 985–989, 2017.

    Article  Google Scholar 

  8. K. M. S. Huq, S. A. Busari, J. Rodriguez, V. Frascolla, W. Bazzi, and D. C. Sicker, “Terahertz-enabled wireless system for beyond-5g ultra-fast networks: A brief survey,” IEEE Network, vol. 33, no. 4, pp. 89–95, 2019.

    Article  Google Scholar 

  9. H.-J. Song and N. Lee, “Terahertz communications: Challenges in the next decade,” IEEE Transactions on Terahertz Science and Technology, vol. 12, no. 2, pp. 105–117, 2022.

    Article  Google Scholar 

  10. V. Petrov, J. Kokkoniemi, D. Moltchanov, J. Lehtomaki, Y. Koucheryavy, and M. Juntti, “Last meter indoor terahertz wireless access: Performance insights and implementation roadmap,” IEEE Communications Magazine, vol. 56, no. 6, pp. 158–165, 2018.

    Article  Google Scholar 

  11. C. Han and Y. Chen, “Propagation modeling for wireless communications in the terahertz band,” IEEE Communications Magazine, vol. 56, no. 6, pp. 96–101, 2018.

    Article  Google Scholar 

  12. J. M. Jornet and I. F. Akyildiz, “Channel modeling and capacity analysis for electromagnetic wireless nanonetworks in the terahertz band,” IEEE Transactions on Wireless Communications, vol. 10, no. 10, pp. 3211–3221, 2011.

    Article  Google Scholar 

  13. C. Han, A. O. Bicen, and I. F. Akyildiz, “Multi-ray channel modeling and wideband characterization for wireless communications in the terahertz band,” IEEE Transactions on Wireless Communications, vol. 14, no. 5, pp. 2402–2412, 2015.

    Article  Google Scholar 

  14. Y. Chen, Y. Li, C. Han, Z. Yu, and G. Wang, “Channel measurement and ray-tracing-statistical hybrid modeling for low-terahertz indoor communications,” IEEE Transactions on Wireless Communications, vol. 20, no. 12, pp. 8163–8176, 2021.

    Article  Google Scholar 

  15. C. Han, W. Gao, N. Yang, and J. M. Jornet, “Molecular absorption effect: A double-edged sword of terahertz communications,” IEEE Wireless Communications, to appear, 2022. Early access, https://arxiv.org/10.1109/MWC.016.2100704

  16. C. Han, A. O. Bicen, and I. F. Akyildiz, “Multi-wideband waveform design for distance-adaptive wireless communications in the terahertz band,” IEEE Transactions on Signal Processing, vol. 64, no. 4, pp. 910–922, 2016.

    MathSciNet  MATH  Google Scholar 

  17. Y. Chen and C. Han, “Time-varying channel modeling for low-terahertz urban vehicle-to-infrastructure communications,” in Proc. of IEEE Global Communications Conference (GLOBECOM), 2019.

    Google Scholar 

  18. H. Wang et al., “Power amplifiers performance survey 2000-present.” [Online]. Available: https://gems.ece.gatech.edu/PA_survey.html

  19. H. G. Myung, J. Lim, and D. J. Goodman, “Single carrier fdma for uplink wireless transmission,” IEEE Vehicular Technology Magazine, vol. 1, no. 3, pp. 30–38, 2006.

    Article  Google Scholar 

  20. E. Dahlman, S. Parkvall, and J. Sköld, “5G NR: the next generation wireless access technology.” Academic Press, 2018, pp. 419–441.

    Google Scholar 

  21. A.-A. A. Boulogeorgos, V. M. Kapinas, R. Schober, and G. K. Karagiannidis, “I/q-imbalance self-interference coordination,” IEEE Transactions on Wireless Communications, vol. 15, no. 6, pp. 4157–4170, 2016.

    Article  Google Scholar 

  22. Z. Sha and Z. Wang, “Channel estimation and equalization for terahertz receiver with rf impairments,” IEEE Journal on Selected Areas in Communications, vol. 39, no. 6, pp. 1621–1635, 2021.

    Article  Google Scholar 

  23. A. A. Zaidi, R. Baldemair, H. Tullberg, H. Bjorkegren, L. Sundstrom, J. Medbo, C. Kilinc, and I. Da Silva, “Waveform and numerology to support 5g services and requirements,” IEEE Communications Magazine, vol. 54, no. 11, pp. 90–98, 2016.

    Article  Google Scholar 

  24. H. G. Myung and D. J. Goodman, Single carrier FDMA: a new air interface for long term evolution. John Wiley & Sons, 2008, vol. 8.

    Google Scholar 

  25. H. Sarieddeen, M.-S. Alouini, and T. Y. Al-Naffouri, “An overview of signal processing techniques for terahertz communications,” Proceedings of the IEEE, vol. 109, no. 10, pp. 1628–1665, 2021.

    Article  Google Scholar 

  26. H. Yuan, N. Yang, K. Yang, C. Han, and J. An, “Hybrid beamforming for terahertz multi-carrier systems over frequency selective fading,” IEEE Transactions on Communications, vol. 68, no. 10, pp. 6186–6199, Oct. 2020. https://arxiv.org/10.1109/TCOMM.2020.3008699

    Article  Google Scholar 

  27. S. M. Perera, A. Madanayake, and R. J. Cintra, “Radix-2 self-recursive sparse factorizations of delay vandermonde matrices for wideband multi-beam antenna arrays,” IEEE Access, vol. 8, pp. 25 498–25 508, 2020.

    Google Scholar 

  28. D. Falconer, S. L. Ariyavisitakul, A. Benyamin-Seeyar, and B. Eidson, “Frequency domain equalization for single-carrier broadband wireless systems,” IEEE Communications Magazine, vol. 40, no. 4, pp. 58–66, 2002.

    Article  Google Scholar 

  29. A. Sahin, R. Yang, E. Bala, M. C. Beluri, and R. L. Olesen, “Flexible dft-s-ofdm: Solutions and challenges,” IEEE Communications Magazine, vol. 54, no. 11, pp. 106–112, 2016.

    Article  Google Scholar 

  30. X. Cheng, N. Lou, and B. Yuan, “Iterative decision-aided compensation of phase noise in millimeter-wave SC-FDE systems,” IEEE Communications Letters, vol. 20, no. 5, pp. 1030–1033, 2016.

    Article  Google Scholar 

  31. O. Tervo, T. Levanen, K. Pajukoski, J. Hulkkonen, P. Wainio, and M. Valkama, “5g new radio evolution towards sub-thz communications,” in Proc. of 2nd 6G Wireless Summit (6G SUMMIT), 2020.

    Google Scholar 

  32. P. Raviteja, K. T. Phan, Y. Hong, and E. Viterbo, “Interference cancellation and iterative detection for orthogonal time frequency space modulation,” IEEE Transactions on Wireless Communications, vol. 17, no. 10, pp. 6501–6515, 2018.

    Article  Google Scholar 

  33. Z. Wei, W. Yuan, S. Li, J. Yuan, G. Bharatula, R. Hadani, and L. Hanzo, “Orthogonal time-frequency space modulation: A promising next-generation waveform,” IEEE Wireless Communications, vol. 28, no. 4, pp. 136–144, 2021.

    Article  Google Scholar 

  34. G. D. Surabhi, R. M. Augustine, and A. Chockalingam, “On the diversity of uncoded otfs modulation in doubly-dispersive channels,” IEEE Transactions on Wireless Communications, vol. 18, no. 6, pp. 3049–3063, 2019.

    Article  Google Scholar 

  35. ——, “Peak-to-average power ratio of OTFS modulation,” IEEE Communications Letters, vol. 23, no. 6, pp. 999–1002, 2019.

    Article  Google Scholar 

  36. Z. Wei, W. Yuan, S. Li, J. Yuan, and D. W. K. Ng, “Transmitter and receiver window designs for orthogonal time-frequency space modulation,” IEEE Transactions on Communications, vol. 69, no. 4, pp. 2207–2223, 2021.

    Article  Google Scholar 

  37. P. Raviteja, K. T. Phan, and Y. Hong, “Embedded pilot-aided channel estimation for OTFS in delay–doppler channels,” IEEE Transactions on Vehicular Technology, vol. 68, no. 5, pp. 4906–4917, 2019.

    Article  Google Scholar 

  38. H. B. Mishra, P. Singh, A. K. Prasad, and R. Budhiraja, “Otfs channel estimation and data detection designs with superimposed pilots,” IEEE Transactions on Wireless Communications, vol. 21, no. 4, pp. 2258–2274, 2022.

    Article  Google Scholar 

  39. W. Yuan, S. Li, Z. Wei, J. Yuan, and D. W. K. Ng, “Data-aided channel estimation for otfs systems with a superimposed pilot and data transmission scheme,” IEEE Wireless Communications Letters, vol. 10, no. 9, pp. 1954–1958, 2021.

    Article  Google Scholar 

  40. M. Li, S. Zhang, F. Gao, P. Fan, and O. A. Dobre, “A new path division multiple access for the massive MIMO-OTFS networks,” IEEE Journal on Selected Areas in Communications, vol. 39, no. 4, pp. 903–918, 2021.

    Article  Google Scholar 

  41. Y. Liu, S. Zhang, F. Gao, J. Ma, and X. Wang, “Uplink-aided high mobility downlink channel estimation over massive MIMO-OTFS system,” IEEE Journal on Selected Areas in Communications, vol. 38, no. 9, pp. 1994–2009, 2020.

    Article  Google Scholar 

  42. F. Liu, Z. Yuan, Q. Guo, Z. Wang, and P. Sun, “Message passing-based structured sparse signal recovery for estimation of otfs channels with fractional doppler shifts,” IEEE Transactions on Wireless Communications, vol. 20, no. 12, pp. 7773–7785, 2021.

    Article  Google Scholar 

  43. W. Yuan, Z. Wei, J. Yuan, and D. W. K. Ng, “A simple variational bayes detector for orthogonal time frequency space (otfs) modulation,” IEEE Transactions on Vehicular Technology, vol. 69, no. 7, pp. 7976–7980, 2020.

    Article  Google Scholar 

  44. S. Tiwari, S. S. Das, and V. Rangamgari, “Low complexity LMMSE receiver for OTFS,” IEEE Communications Letters, vol. 23, no. 12, pp. 2205–2209, 2019.

    Article  Google Scholar 

  45. G. D. Surabhi and A. Chockalingam, “Low-complexity linear equalization for otfs modulation,” IEEE Communications Letters, vol. 24, no. 2, pp. 330–334, 2020.

    Article  Google Scholar 

  46. H. Qu, G. Liu, L. Zhang, S. Wen, and M. A. Imran, “Low-complexity symbol detection and interference cancellation for otfs system,” IEEE Transactions on Communications, vol. 69, no. 3, pp. 1524–1537, 2021.

    Article  Google Scholar 

  47. L. Gaudio, M. Kobayashi, G. Caire, and G. Colavolpe, “On the effectiveness of OTFS for joint radar parameter estimation and communication,” IEEE Transactions on Wireless Communications, vol. 19, no. 9, pp. 5951–5965, 2020.

    Article  Google Scholar 

  48. Y. Wu, C. Han, and Z. Chen, “An energy-efficient DFT-spread orthogonal time frequency space system for terahertz integrated sensing and communication,” in Proc. of IEEE International Conference on Communications (ICC), 2022.

    Google Scholar 

  49. Y. Wu, C. Han and Z. Chen, “DFT-spread orthogonal time frequency space system with superimposed pilots for terahertz integrated sensing and communication,” IEEE Transactions on Wireless Communications, 2023. Early access, https://arxiv.org/10.1109/TWC.2023.3250267

  50. S. Tarboush, H. Sarieddeen, M.-S. Alouini, and T. Y. Al-Naffouri, “Single- versus multicarrier terahertz-band communications: A comparative study,” IEEE Open Journal of the Communications Society, vol. 3, pp. 1466–1486, 2022.

    Article  Google Scholar 

  51. V. Petrov, T. Kurner, and I. Hosako, “IEEE 802.15.3d: First standardization efforts for sub-terahertz band communications toward 6g,” IEEE Communications Magazine, vol. 58, no. 11, pp. 28–33, 2020.

    Article  Google Scholar 

  52. J. Kim, Y. H. Yun, C. Kim, and J. H. Cho, “Minimization of papr for dft-spread ofdm with bpsk symbols,” IEEE Transactions on Vehicular Technology, vol. 67, no. 12, pp. 11 746–11 758, 2018.

    Google Scholar 

  53. M. Win and R. Scholtz, “Ultra-wide bandwidth time-hopping spread-spectrum impulse radio for wireless multiple-access communications,” IEEE Transactions on Communications, vol. 48, no. 4, pp. 679–689, 2000.

    Article  Google Scholar 

  54. J. M. Jornet and I. F. Akyildiz, “Femtosecond-long pulse-based modulation for terahertz band communication in nanonetworks,” IEEE Transactions on Communications, vol. 62, no. 5, pp. 1742–1754, 2014.

    Article  Google Scholar 

  55. C. Han and I. F. Akyildiz, “Distance-aware bandwidth-adaptive resource allocation for wireless systems in the terahertz band,” IEEE Transactions on Terahertz Science and Technology, vol. 6, no. 4, pp. 541–553, 2016.

    Article  Google Scholar 

  56. Z. Hossain and J. M. Jornet, “Hierarchical bandwidth modulation for ultra-broadband terahertz communications,” in Proc. of IEEE International Conference on Communications (ICC), 2019.

    Google Scholar 

  57. C. Han, Y. Wu, Z. Chen, Y. Chen, and G. Wang, “THz ISAC: A physical-layer perspective of terahertz integrated sensing and communication,” IEEE Communications Magazine, to appear, 2022. Available: https://arxiv.org/abs/2209.03145

  58. Z. Chen, C. Han, Y. Wu, L. Li, C. Huang, Z. Zhang, G. Wang, and W. Tong, “Terahertz wireless communications for 2030 and beyond: A cutting-edge frontier,” IEEE Communications Magazine, vol. 59, no. 11, pp. 66–72, 2021.

    Article  Google Scholar 

  59. J. A. Zhang, M. L. Rahman, K. Wu, X. Huang, Y. J. Guo, S. Chen, and J. Yuan, “Enabling joint communication and radar sensing in mobile networks—a survey,” IEEE Communications Surveys & Tutorials, vol. 24, no. 1, pp. 306–345, 2022.

    Article  Google Scholar 

  60. Y. Wu, F. Lemic, C. Han, and Z. Chen, “Sensing integrated DFT-spread OFDM waveform and deep learning-powered receiver design for terahertz integrated sensing and communication systems,” IEEE Transactions on Communications, vol. 71, no. 1, pp. 595–610, 2023.

    Article  Google Scholar 

  61. T. Mao, J. Chen, Q. Wang, C. Han, Z. Wang, and G. K. Karagiannidis, “Waveform design for joint sensing and communications in millimeter-wave and low terahertz bands,” IEEE Transactions on Communications, vol. 70, no. 10, pp. 7023–7039, 2022.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chong Han .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wu, Y., Han, C. (2024). Waveform and Modulation Design of Terahertz Communications. In: Lin, X., Zhang, J., Liu, Y., Kim, J. (eds) Fundamentals of 6G Communications and Networking. Signals and Communication Technology. Springer, Cham. https://doi.org/10.1007/978-3-031-37920-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-37920-8_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-37919-2

  • Online ISBN: 978-3-031-37920-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics