Skip to main content

Bridging the Digital Divide

  • Chapter
  • First Online:
Fundamentals of 6G Communications and Networking

Abstract

Digital divide refers to the gap between populations at different socioeconomic levels with respect to their access to the Internet and communication technologies in general. In this chapter, we summarize the recent developments aimed at bridging such inequality from a technical and economic standpoint. After a preliminary discussion on alternative backhaul paradigms, we focus on space-, air-, and ground-based communication paradigms, as well as their integration. Subsequently, we discuss the affordability of these solutions, as it is primarily the economic aspect which hinders digital inclusion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    As of today, there is no evidence of tethered gliders.

  2. 2.

    A blimp is essentially a nonrigid airship. Its shape depends on its envelope and the pressure of the lifting gas.

  3. 3.

    A typical example is the DJI Matrice 300 RTK drone, with power station BS60 and flight controller N3.

References

  1. Marine renewables: Meta chooses GEPS Techno autonomous platform to boost its submarine cables, 2022. energyfacts. Accessed: Sep. 28, 2022. Available online: https://www.energyfacts.eu/marine-renewables-meta-chooses-geps-techno-autonomous-platform-to-boost-its-submarine-cables/.

  2. “Longest Subsea Cable Ever Deployed”: 2Africa Cable Lands in Genoa, 2022. Offshore Engineer. Accessed: Sep. 28, 2022. Available online: https://www.oedigital.com/news/495831-longest-subsea-cable-ever-deployed-2africa-cable-lands-in-genoa.

  3. Modification of wind turbines to contain communication signal functionality, by T. M. Sievert (Nov. 21, 2006). Patent US 7,138,961 B2 [Online]. Available: https://patents.google.com/patent/US20040232703A1/en.

  4. A. Kishk, M., Bader, A., and Alouini, M.-S. Aerial base station deployment in 6G cellular networks using tethered drones: The mobility and endurance tradeoff. IEEE Vehicular Technology Magazine 15, 4 (2020), 103–111.

    Google Scholar 

  5. Abbasi, O., and Yanikomeroglu, H. UxNB-enabled cell-free massive MIMO with HAPS-assisted sub-THz backhauling. arXiv preprint arXiv:2201.07379 (2022).

    Google Scholar 

  6. Ali, M. F., Jayakody, D. N. K., Chursin, Y. A., Affes, S., and Dmitry, S. Recent advances and future directions on underwater wireless communications. Archives of Computational Methods in Engineering 27, 5 (2020), 1379–1412.

    Article  Google Scholar 

  7. Alliss, R. J. Optimizing the performance of space to ground optical communications. In Free-Space Laser Communications XXXI (2019), vol. 10910, SPIE, pp. 24–31.

    Google Scholar 

  8. Alqurashi, F. S., Trichili, A., Saeed, N., Ooi, B. S., and Alouini, M.-S. Maritime communications: A survey on enabling technologies, opportunities, and challenges. IEEE Internet of Things Journal (2022), 1–1.

    Google Scholar 

  9. Altaeros. Products. Altaeros, Accessed: Sep. 28, 2022. Available online: https://www.altaeros.com/products/.

  10. Annie Palmer. Amazon will open 172,000-square-foot Project Kuiper internet satellite factory, 2022. Accessed: Nov. 14, 2022. Available online: https://www.cnbc.com/2022/10/27/amazon-to-open-kuiper-internet-satellite-factory.html.

  11. Ata, Y., and Alouini, M.-S. HAPS based FSO links performance analysis and improvement with adaptive optics correction.

    Google Scholar 

  12. Beck, M., and Moore, T. Is universal broadband service impossible? arXiv preprint arXiv:2204.11300 (2022).

    Google Scholar 

  13. Belmekki, B. E. Y., and Alouini, M.-S. Unleashing the potential of networked tethered flying platforms: Prospects, challenges, and applications. IEEE Open Journal of Vehicular Technology 3 (2022), 278–320.

    Article  Google Scholar 

  14. Ben Yahia, O., Erdogan, E., and Kurt, G. K. HAPS-assisted hybrid RF-FSO multicast communications: Error and outage analysis. IEEE Transactions on Aerospace and Electronic Systems (2022).

    Google Scholar 

  15. Benarbia, T., and Kyamakya, K. A literature review of drone-based package delivery logistics systems and their implementation feasibility. Sustainability 14, 1 (2021), 360.

    Article  Google Scholar 

  16. Bilen, T., Ahmadi, H., Canberk, B., and Duong, T. Q. Aeronautical networks for in-flight connectivity: A tutorial of the state-of-the-art and survey of research challenges. IEEE Access (2022).

    Google Scholar 

  17. Bondalapati, P., Tiwari, A., Sahin, M. E., Tang, Q., Saraswat, S., Suryakumar, V., Yazdan, A., Kusuma, J., and Dubey, A. Supercell: A wide-area coverage solution using high-gain, high-order sectorized antennas on tall towers. arXiv:2012.00161 (2020).

    Google Scholar 

  18. Broadband Commission for Sustainable Development. Achieving the 2025 Advocacy Targets, 2022. Accessed: Sep. 30, 2022. Available online: https://www.broadbandcommission.org/advocacy-targets/.

  19. Calvo, R. M., Poliak, J., Surof, J., Reeves, A., Richerzhagen, M., Kelemu, H. F., Barrios, R., Carrizo, C., Wolf, R., Rein, F., et al. Optical technologies for very high throughput satellite communications. In Free-Space Laser Communications XXXI (2019), vol. 10910, SPIE, pp. 189–204.

    Google Scholar 

  20. Cao, X., Li, Y., Xiong, X., and Wang, J. Dynamic routings in satellite networks: An overview. Sensors 22, 12 (2022), 4552.

    Article  Google Scholar 

  21. Chandrasekharan, S., Gomez, K., Al-Hourani, A., Kandeepan, S., Rasheed, T., Goratti, L., Reynaud, L., Grace, D., Bucaille, I., Wirth, T., and Allsopp, S. Designing and implementing future aerial communication networks. IEEE Communications Magazine 54, 5 (2016), 26–34.

    Article  Google Scholar 

  22. Chaoub, A., Giordani, M., Lall, B., Bhatia, V., Kliks, A., Mendes, L., Rabie, K., Saarnisaari, H., Singhal, A., Zhang, N., et al. 6G for bridging the digital divide: Wireless connectivity to remote areas. IEEE Wireless Communications 29, 1 (2021), 160–168.

    Article  Google Scholar 

  23. Chiaraviglio, L., Amorosi, L., Blefari-Melazzi, N., Dell’Olmo, P., Mastro, A. L., Natalino, C., and Monti, P. Minimum cost design of cellular networks in rural areas with UAVs, optical rings, solar panels, and batteries. IEEE Transactions on Green Communications and Networking 3, 4 (2019), 901–918.

    Article  Google Scholar 

  24. Coldewey, D.Facebook permanently grounds its Aquila solar-powered internet plane, 2018. TechCrunch. Accessed: Nov. 13, 2022. Available online: https://techcrunch.com/2018/06/26/facebook-permanently-grounds-its-aquila-solar-powered-internet-plane/.

  25. Del Portillo, I., Cameron, B. G., and Crawley, E. F. A technical comparison of three low Earth orbit satellite constellation systems to provide global broadband. Acta Astronautica 159 (2019), 123–135.

    Article  Google Scholar 

  26. Du, K., Mujumdar, O., Ozdemir, O., Ozturk, E., Guvenc, I., Sichitiu, M. L., Dai, H., and Bhuyan, A. 60 GHz outdoor propagation measurements and analysis using Facebook Terragraph radios. In IEEE Radio and Wireless Symposium (RWS) (Las Vegas, NV, USA, 2022), pp. 156–159.

    Google Scholar 

  27. Erez Aviv. Wireless Backhaul Spectrum- Everything You Need To Know in 2022, 2022. Accessed: Nov. 19, 2022. Available online: https://www.ceragon.com/blog/wireless-backhaul-spectrum.

  28. Erkmen, B.Beaming broadband across the Congo River, 2021. Google X. Accessed: Sep. 24, 2022. Available online: https://x.company/blog/posts/taara-beaming-broadband-across-congo/.

  29. Fencl, M., Dohnal, M., Valtr, P., Grabner, M., and Bareš, V. Atmospheric observations with e-band microwave links—challenges and opportunities. Atmospheric Measurement Techniques 13, 12 (2020), 6559–6578.

    Article  Google Scholar 

  30. Gao, W., and Sahoo, A. Performance impact of coexistence groups in a GAA-GAA coexistence scheme in the CBRS band. IEEE Transactions on Cognitive Communications and Networking 7, 1 (2020), 184–196.

    Article  Google Scholar 

  31. Glaser, A.Here’s why Facebook’s massive drone crashed in the Arizona desert, 2016. Vox. Accessed: Nov. 13, 2022. Available online: https://www.vox.com/2016/12/18/13998900/facebooks-drone-crash-aquila-arizona-structural-failure.

  32. Google’s Spectrum Access System. Introduction to CBRS and Spectrum Sharing, 2022. Accessed: Nov. 17, 2022. Online video: https://www.youtube.com/watch?v=5SIawaRwuIE.

  33. Guo, H., Li, J., Liu, J., Tian, N., and Kato, N. A survey on space-air-ground-sea integrated network security in 6G. IEEE Communications Surveys & Tutorials 24, 1 (2021), 53–87.

    Article  Google Scholar 

  34. Herath, H. Starlink: a solution to the digital connectivity divide in education in the global south. arXiv preprint arXiv:2110.09225 (2021).

    Google Scholar 

  35. Hussien, H. M., Katzis, K., Mfupe, L. P., and Bekele, E. T. Capacity, coverage and power profile performance evaluation of a novel rural broadband services exploiting TVWS from high altitude platform. IEEE Open Journal of the Computer Society 3 (2022), 86–95.

    Article  Google Scholar 

  36. Inmarsat. Inmarsat ORCHESTRA Technology, 2022. Accessed: Nov. 14, 2022. Online video: https://www.youtube.com/watch?v=0RtyMtIzI6I.

  37. ITU Telecommunication Development Bureau. Measuring digital development: Facts and figures 2021. Tech. rep., Geneva, Switzerland, 2021. Accessed: Sep. 30, 2022. [Online]. Available: https://www.itu.int/en/ITU-D/Statistics/Pages/facts/default.aspx.

  38. Karabulut Kurt, G., Khoshkholgh, M. G., Alfattani, S., Ibrahim, A., Darwish, T. S. J., Alam, M. S., Yanikomeroglu, H., and Yongacoglu, A. A vision and framework for the high altitude platform station (HAPS) networks of the future. IEEE Communications Surveys & Tutorials 23, 2 (2021), 729–779.

    Article  Google Scholar 

  39. Katzis, K., Mfupe, L., and Hussien, H. M. Opportunities and challenges of bridging the digital divide using 5G enabled high altitude platforms and TVWS spectrum. In Eighth International Conference on Communications and Networking (ComNet) (2020), IEEE, pp. 1–7.

    Google Scholar 

  40. Lahmeri, M.-A., Kishk, M. A., and Alouini, M.-S. Charging techniques for UAV-assisted data collection: Is laser power beaming the answer? IEEE Communications Magazine 60, 5 (2022), 50–56.

    Article  Google Scholar 

  41. Lawler, R.Alphabet’s Project Taara laser tech beamed 700TB of data across nearly 5 km, 2021. The Verge. Accessed: Sep. 24, 2022. Available online: https://www.theverge.com/2021/9/16/22677015/project-taara-fsoc-wireless-internet-kinshasa-congo-fiber.

  42. Liquide, A. Flying whales: a new take on the airship, Accessed: Nov. 6, 2022. Available online: https://www.airliquide.com/stories/innovation/flying-whales-new-take-airship.

  43. Lobner, P. Thales alenia space—stratobus, Accessed: Nov. 6, 2022. Available online: https://lynceans.org/wp-content/uploads/2021/04/Thales-Alenia-Space_Stratobus-converted.pdf.

  44. Macevičiūtė, E., and Wilson, T. D. Digital means for reducing digital inequality: Literature review. Informing science: the international journal of an emerging transdiscipline 21 (2018), 269–287.

    Article  Google Scholar 

  45. Marek, S.Facebook says its fiber-spinning robot will dramatically reduce costs, 2021. Fierce Telecom. Accessed: Sep. 23, 2022. Available online: https://www.fiercetelecom.com/tech/facebook-says-its-fiber-spinning-robot-will-dramatically-reduce-costs.

  46. Massaro, M., and Beltrán, F. Will 5G lead to more spectrum sharing? discussing recent developments of the LSA and the CBRS spectrum sharing frameworks. Telecommunications Policy 44, 7 (2020), 101973.

    Article  Google Scholar 

  47. Matracia, M., Kishk, M. A., and Alouini, M.-S. Coverage analysis for UAV-assisted cellular networks in rural areas. IEEE Open Journal of Vehicular Technology 2 (2021), 194–206.

    Article  Google Scholar 

  48. Matracia, M., Kishk, M. A., and Alouini, M.-S. Exploiting wind-turbine-mounted base stations to enhance rural connectivity. IEEE Communications Magazine 59, 12 (2021), 50–56.

    Article  Google Scholar 

  49. Matracia, M., Kishk, M. A., and Alouini, M.-S. On the topological aspects of UAV-assisted post-disaster wireless communication networks. IEEE Communications Magazine 59, 11 (2021), 59–64.

    Article  Google Scholar 

  50. Matracia, M., Saeed, N., Kishk, M. A., and Alouini, M.-S. Post-disaster communications: Enabling technologies, architectures, and open challenges. IEEE Open Journal of the Communications Society 3 (2022), 1177–1205.

    Article  Google Scholar 

  51. McDowell, J.Starlink Launch Statistics, Planet4589. Retrieved 11 September 2022. Available online: https://planet4589.org/space/stats/star/starstats.html.

  52. Mogili, U. R., and Deepak, B. Review on application of drone systems in precision agriculture. Procedia computer science 133 (2018), 502–509.

    Article  Google Scholar 

  53. Mohney, D.“Micro GEO satellite builder Astranis raises $90 million, 2020. Space IT Bridge. Accessed: Oct. 12, 2022. Available online: https://www.spaceitbridge.com/micro-geo-satellite-builder-astranis-raises-90-million.htm.

  54. Mohney, D.OneWeb talks satellite broadband speeds, constellation configs, Space IT Bridge. Accessed: 14. Oct, 2022. Available online: https://www.spaceitbridge.com/oneweb-talks-satellite-broadband-speeds-constellation-configs.htm.

  55. Montenegro, L. O., and Araral, E. Can competition-enhancing regulation bridge the quality divide in Internet provision? Telecommunications Policy 44, 1 (2020), 101836.

    Article  Google Scholar 

  56. Mozaffari, M., Saad, W., Bennis, M., Nam, Y.-H., and Debbah, M. A tutorial on UAVs for wireless networks: Applications, challenges, and open problems. IEEE communications surveys & tutorials 21, 3 (2019), 2334–2360.

    Article  Google Scholar 

  57. Mulgaonkar, D. R., Sharma, D., Mehrotra, R., and Vrind, T. Advanced mechanisms for satellite and terrestrial co-existence in 26/28 GHz mmWave spectrum. In 2020 IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS) (2020), IEEE, pp. 1–6.

    Google Scholar 

  58. Naik, G., Liu, J., and Park, J.-M. J. Coexistence of wireless technologies in the 5 GHz bands: A survey of existing solutions and a roadmap for future research. IEEE Communications Surveys & Tutorials 20, 3 (2018), 1777–1798.

    Article  Google Scholar 

  59. OECD. Understanding the digital divide. OECD Digital Economy Papers (2001. [Online]. http://www.oecd.org/dataoecd/38/57/1888451.pdf).

  60. Osoro, B., and Oughton, E. Universal broadband assessment of low earth orbit satellite constellations: Evaluating capacity, coverage, cost, and environmental emissions. SSRN (2022. Available online: https://ssrn.com/abstract=4178732).

  61. Oughton, E. J., Comini, N., Foster, V., and Hall, J. W. Policy choices can help keep 4G and 5G universal broadband affordable. Technological Forecasting and Social Change 176 (2022), 121409.

    Article  Google Scholar 

  62. Pati, B. M., Taparugssanagorn, A., Lertsinsrubtavee, A., and Tansakul, N. Performan study of television with spaces (TVWS) pilot network in Thailand. NBTC Journal 3, 3 (2019), 98–119.

    Google Scholar 

  63. Polak, L., and Milos, J. Performance analysis of LoRa in the 2.4 GHz ISM band: coexistence issues with Wi-Fi. Telecommunication Systems 74, 3 (2020), 299–309.

    Google Scholar 

  64. Potter, B., Valentino, G., Yates, L., Benzing, T., and Salman, A. Environmental monitoring using a drone-enabled wireless sensor network. In Systems and Information Engineering Design Symposium (SIEDS) (2019), pp. 1–6.

    Google Scholar 

  65. Quispe, M., Olivares, J., Samaniego, J., and Morán, R. Technical and economic analysis of TVWS and 5.8 GHz WiFi systems for rural areas. In XXIX International Conference on Electronics, Electrical Engineering and Computing (INTERCON) (2022), IEEE, pp. 1–4.

    Google Scholar 

  66. Rahman, A. U., Fourati, F., Ngo, K.-H., Jindal, A., and Alouini, M.-S. Network graph generation through adaptive clustering and infection dynamics: A step toward global connectivity. IEEE Communications Letters 26, 4 (2022), 783–787.

    Article  Google Scholar 

  67. Rahman, A. U., Kishk, M. A., and Alouini, M.-S. Improving spectral efficiency of wireless networks through democratic spectrum sharing. arXiv preprint arXiv:2111.10570 (2021).

    Google Scholar 

  68. Rahman, A. U., Kishk, M. A., and Alouini, M.-S. A game-theoretic framework for coexistence of WiFi and cellular networks in the 6-GHz unlicensed spectrum. IEEE Transactions on Cognitive Communications and Networking (2022).

    Google Scholar 

  69. Ray, P. P. A review on 6G for space-air-ground integrated network: Key enablers, open challenges, and future direction. Journal of King Saud University-Computer and Information Sciences (2021).

    Google Scholar 

  70. Rowney, P. TV white space technology set to transform access and affordability in Malawi, 2017. Accessed: Sep. 29, 2022. [Online]. https://a4ai.org/news/tv-white-space-technology-set-to-transform-access-and-affordability-in-malawi/.

  71. Saeed, N., Almorad, H., Dahrouj, H., Al-Naffouri, T. Y., Shamma, J. S., and Alouini, M.-S. Point-to-point communication in integrated satellite-aerial 6G networks: State-of-the-art and future challenges. IEEE Open Journal of the Communications Society (2021).

    Google Scholar 

  72. Salama, M. R., and Srinivas, S. Collaborative truck multi-drone routing and scheduling problem: Package delivery with flexible launch and recovery sites. Transportation Research Part E: Logistics and Transportation Review 164 (2022), 102788.

    Article  Google Scholar 

  73. Samy, R., Yang, H.-C., Rakia, T., and Alouini, M.-S. Space-air-ground FSO networks for high-throughput satellite communications. IEEE Communications Magazine (2022).

    Google Scholar 

  74. Sarica, D. White wind turbine on green grass field. Pexels, 2020. https://www.pexels.com/photo/white-wind-turbine-on-green-grass-field-6251771/.

  75. Sathya, V., Kala, S. M., Rochman, M. I., Ghosh, M., and Roy, S. Standardization advances for cellular and Wi-Fi coexistence in the unlicensed 5 and 6 GHz bands. GetMobile: Mobile Computing and Communications 24, 1 (2020), 5–15.

    Article  Google Scholar 

  76. Serrano, P., Gramaglia, M., Mancini, F., Chiaraviglio, L., and Bianchi, G. Balloons in the sky: Unveiling the characteristics and trade-offs of the google loon service. IEEE Transactions on Mobile Computing (2021), 1–1.

    Google Scholar 

  77. Singya, P. K., Makki, B., D’Errico, A., and Alouini, M.-S. Hybrid FSO/THz-based backhaul network for mmWave terrestrial communication. arXiv preprint:2204.08357 (2022).

    Google Scholar 

  78. SpaceX. Aerial view clouds Nasa satellite. Pexels, 2017. https://www.pexels.com/photo/aerial-view-clouds-nasa-satellite-23781/.

  79. Starlink, 2022. Accessed: Sep. 30, 2022. https://www.starlink.com/.

  80. Swaminathan, R., Sharma, S., Vishwakarma, N., and Madhukumar, A. HAPS-based relaying for integrated space–air–ground networks with hybrid FSO/RF communication: A performance analysis. IEEE Transactions on Aerospace and Electronic Systems 57, 3 (2021), 1581–1599.

    Article  Google Scholar 

  81. Swinhoe, D. Alphabet shuts down Internet balloon subsidiary Project Loon. Data Center Dynamics, 2021. Accessed: Sep. 30, 2022. https://www.datacenterdynamics.com/en/news/alphabet-shuts-down-internet-balloon-subsidiary-project-loon/.

  82. Talgat, A., Kishk, M. A., and Alouini, M.-S. Stochastic geometry-based analysis of LEO satellite communication systems. IEEE Communications Letters 25, 8 (2021), 2458–2462.

    Article  Google Scholar 

  83. Tarana, 2022. Accessed: Nov. 20, 2022. Available online: https://www.taranawireless.com/.

  84. TELCOMA Global. CBRS, 2022. Accessed: Nov. 17, 2022. Online video: https://www.youtube.com/watch?v=g5Y9Ae2Ohj8.

  85. Telesat. Telesat Lightspeed, 2022. Accessed: Nov. 14, 2022. Available online: https://www.telesat.com/leo-satellites/.

  86. Tiwari, A.SuperCell: Reaching new heights for wider connectivity, 2020. Facebook Engineering. Accessed: Sep. 23, 2022. Available online: https://engineering.fb.com/2020/12/03/connectivity/supercell-reaching-new-heights-for-wider-connectivity/.

  87. Trichili, A., Ragheb, A., Briantcev, D., Esmail, M. A., Altamimi, M., Ashry, I., Ooi, B. S., Alshebeili, S., and Alouini, M.-S. Retrofitting FSO systems in existing RF infrastructure: A non-zero-sum game technology. IEEE Open Journal of the Communications Society 2 (2021), 2597–2615.

    Article  Google Scholar 

  88. Undseth, M., Jolly, C., and Olivari, M. Space sustainability: The economics of space debris in perspective.

    Google Scholar 

  89. Vehicles, H. A. Airlander 10, Accessed: Oct. 29, 2022. Available online: https://www.hybridairvehicles.com/our-aircraft/airlander-10/.

  90. Vinh, Q. N. Flying white drone. Pexels, 2017. https://www.pexels.com/photo/photo-of-a-flying-white-drone-2164417/.

  91. Voila. A New Type of Satellite Constellation, Accessed: 14. Oct, 2022. Available online: https://www.leosat.com/to/technology.

  92. Wang, R., Kishk, M. A., and Alouini, M.-S. Stochastic geometry-based low latency routing in massive LEO satellite networks. IEEE Transactions on Aerospace and Electronic Systems (2022), 1–14.

    Google Scholar 

  93. Wang, R., Kishk, M. A., and Alouini, M.-S. Ultra-dense LEO satellite-based communication systems: A novel modeling technique. IEEE Communications Magazine 60, 4 (2022), 25–31.

    Article  Google Scholar 

  94. Wang, R., Talgat, A., Kishk, M. A., and Alouini, M.-S. Conditional contact angle distribution in LEO satellite-relayed transmission. IEEE Communications Letters (2022).

    Google Scholar 

  95. Zhang, N., Zhang, S., Yang, P., Alhussein, O., Zhuang, W., and Shen, X. S. Software defined space-air-ground integrated vehicular networks: Challenges and solutions. IEEE Communications Magazine 55, 7 (2017), 101–109.

    Article  Google Scholar 

  96. Zong, P., and Kohani, S. Design of LEO constellations with inter-satellite connects based on the performance evaluation of the three constellations SpaceX, OneWeb and Telesat. Korean Journal of Remote Sensing 37, 1 (2021), 23–40.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maurilio Matracia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Matracia, M., Rahman, A.U., Wang, R., Kishk, M.A., Alouini, MS. (2024). Bridging the Digital Divide. In: Lin, X., Zhang, J., Liu, Y., Kim, J. (eds) Fundamentals of 6G Communications and Networking. Signals and Communication Technology. Springer, Cham. https://doi.org/10.1007/978-3-031-37920-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-37920-8_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-37919-2

  • Online ISBN: 978-3-031-37920-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics