Skip to main content

Non-terrestrial Network

  • Chapter
  • First Online:
Fundamentals of 6G Communications and Networking

Part of the book series: Signals and Communication Technology ((SCT))

  • 808 Accesses

Abstract

This chapter provides an overview of non-terrestrial network (NTN), which is expected to become an important component of the sixth-generation (6G) mobile communication networks. We first introduce the heterogeneous NTN architecture that consists of satellites, high-altitude platform system (HAPS), and unmanned aerial system (UAS). Then, we discuss the recent advancement on NTN and introduce some use cases. By considering the important characteristics of NTN communications, we further present the mathematical analysis for NTN, such as antenna modelling, channel modelling, link budget analysis, and mobility modelling. Some important design issues in NTN are discussed, including multiple access, handover management, interference control, and mobility management. Finally, to support the ambitious goals of 6G, several future research directions of NTN are summarized, including flexible mobility management for heterogeneous networks, cross-layer resource management, seamless and continuous coverage in three-dimensional (3D) space, and NTN integrated sensing and localization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The beam footprint has an elliptical shape and it may either move over earth with NTN on its orbit or remain fixed relative to the earth if beam pointing mechanisms are applied to compensate for NTN motion [3].

References

  1. X. You, C. Wang, J. Huang, X. Gao, Z. Zhang, and M. Wang, “Towards 6G wireless communication networks: Vision, enabling technologies, and new paradigm shifts,” Science China Information Sciences, vol. 64, no. 1, pp. 1–74, 2020.

    Google Scholar 

  2. B. Aazhang, P. Ahokangas, H. Alves, M.-S. Alouini, J. Beek, H. Benn, M. Bennis, J. Belfiore, E. Strinati, F. Chen, K. Chang, F. Clazzer, S. Dizit, D. Kwon, M. Giordiani, W. Haselmayr, J. Haapola, E. Hardouin, E. Harjula, and P. Zhu, Key drivers and research challenges for 6G ubiquitous wireless intelligence (white paper), 2019.

    Google Scholar 

  3. 3GPP, “Solutions for NR to support non-terrestrial networks (NTN),” 2019.

    Google Scholar 

  4. G. Karabulut Kurt, M. G. Khoshkholgh, S. Alfattani, A. Ibrahim, T. S. J. Darwish, M. S. Alam, H. Yanikomeroglu, and A. Yongacoglu, “A vision and framework for the high altitude platform station (HAPs) networks of the future,” IEEE Communications Surveys and Tutorials, vol. 23, no. 2, pp. 729–779, 2021.

    Article  Google Scholar 

  5. Y. Maguire, “High altitude connectivity: The next chapter,” Facebook, 2018.

    Google Scholar 

  6. Y. Zeng, Q. Wu, and R. Zhang, “Accessing from the sky: A tutorial on UAV communications for 5G and beyond,” Proceedings of the IEEE, vol. 107, no. 12, pp. 2327–2375, 2019.

    Article  Google Scholar 

  7. V. U. Pai and B. Sainath, “UAV selection and link switching policy for hybrid tethered UAV-assisted communication,” IEEE Communications Letters, vol. 25, no. 7, pp. 2410–2414, 2021.

    Article  Google Scholar 

  8. R. Giofrè, P. Colantonio, F. Giannini, L. Gonzalez, L. Cabria, and F. De Arriba, “Development of solid state power amplifier on GaN technology for Galileo satellite systems,” in 2016 21st International Conference on Microwave, Radar and Wireless Communications (MIKON), 2016, pp. 1–4.

    Google Scholar 

  9. M. Quintan, “Galileo - a European global satellite navigation system,” in 2005 The IEE Seminar on New Developments and Opportunities in Global Navigation Satellite Systems (Ref. No. 2005/10810), 2005, pp. 9–16.

    Google Scholar 

  10. “DJI-official website,” https://www.dji.com.

  11. F. Rinaldi, H.-L. Maattanen, J. Torsner, S. Pizzi, S. Andreev, A. Iera, Y. Koucheryavy, and G. Araniti, “Non-terrestrial networks in 5G & beyond: A survey,” IEEE Access, vol. 8, pp. 165 178–165 200, 2020.

    Google Scholar 

  12. X. Lin, S. Rommer, S. Euler, E. A. Yavuz, and R. S. Karlsson, “5G from space: An overview of 3GPP non-terrestrial networks,” IEEE Communications Standards Magazine, 2021.

    Google Scholar 

  13. 3GPP, “Study on new radio (NR) to support non-terrestrial networks,” 2019.

    Google Scholar 

  14. A. Mohammed, A. Mehmood, F.-N. Pavlidou, and M. Mohorcic, “The role of high-altitude platforms (HAPs) in the global wireless connectivity,” Proceedings of the IEEE, vol. 99, no. 11, pp. 1939–1953, 2011.

    Article  Google Scholar 

  15. Y. Zeng, R. Zhang, and T. J. Lim, “Wireless communications with unmanned aerial vehicles: Opportunities and challenges,” IEEE Communications Magazine, vol. 54, no. 5, pp. 36–42, 2016.

    Article  Google Scholar 

  16. Y. Zeng, J. Lyu, and R. Zhang, “Cellular-connected UAV: Potential, challenges, and promising technologies,” IEEE Wireless Communications, vol. 26, no. 1, pp. 120–127, 2018.

    Article  Google Scholar 

  17. “3GPP specifications: active work programme,” https://www.3gpp.org/DynaReport/GanttChart-Level-2.htm.

  18. G. Geraci, A. Garcia-Rodriguez, M. M. Azari, A. Lozano, M. Mezzavilla, S. Chatzinotas, Y. Chen, S. Rangan, and M. Di Renzo, “What will the future of UAV cellular communications be? a flight from 5G to 6G,” arXiv preprint arXiv:2105.04842, 2021.

    Google Scholar 

  19. M. Giordani and M. Zorzi, “Non-terrestrial networks in the 6G era: Challenges and opportunities,” IEEE Network, vol. 35, no. 2, pp. 244–251, 2020.

    Article  Google Scholar 

  20. S. Chen, S. Sun, and S. Kang, “System integration of terrestrial mobile communication and satellite communication—the trends, challenges and key technologies in B5G and 6G,” China Communications, vol. 17, no. 12, pp. 156–171, 2020.

    Article  Google Scholar 

  21. A. Pino, Y. Rodriguez-Vaqueiro, B. Gonzalez-Valdes, M. Arias Acuña, D. Martinez-De-Rioja, J. A. Encinar, and G. Toso, “A multibeam parabolic reflectarray for onboard Tx and Rx satellite antennas at the Ka band,” in 2018 IEEE International Symposium on Antennas and Propagation USNC/URSI National Radio Science Meeting, 2018, pp. 1409–1410.

    Google Scholar 

  22. S.-M. Moon, S. Yun, I.-B. Yom, and H. L. Lee, “Phased array shaped-beam satellite antenna with boosted-beam control,” IEEE Transactions on Antennas and Propagation, vol. 67, no. 12, pp. 7633–7636, 2019.

    Article  Google Scholar 

  23. H. He, S. Zhang, Y. Zeng, and R. Zhang, “Joint altitude and beamwidth optimization for UAV-enabled multiuser communications,” IEEE Communications Letters, vol. 22, no. 2, pp. 344–347, 2018.

    Article  Google Scholar 

  24. P.-D. Arapoglou, K. Liolis, M. Bertinelli, A. Panagopoulos, P. Cottis, and R. De Gaudenzi, “Mimo over satellite: A review,” IEEE Communications Surveys and Tutorials, vol. 13, no. 1, pp. 27–51, 2011.

    Article  Google Scholar 

  25. L. You, K.-X. Li, J. Wang, X. Gao, X.-G. Xia, and B. Ottersten, “Massive MIMO transmission for LEO satellite communications,” IEEE Journal on Selected Areas in Communications, vol. 38, no. 8, pp. 1851–1865, 2020.

    Article  Google Scholar 

  26. G. C. Hess, “Land-mobile satellite excess path loss measurements,” IEEE Transactions on Vehicular Technology, vol. 29, no. 2, pp. 290–297, 1980.

    Article  Google Scholar 

  27. C. Loo, “A statistical model for a land mobile satellite link,” IEEE Transactions on Vehicular Technology, vol. 34, no. 3, pp. 122–127, 1985.

    Article  Google Scholar 

  28. L. Bai, C.-X. Wang, G. Goussetis, S. Wu, Q. Zhu, W. Zhou, and E.-H. M. Aggoune, “Channel modeling for satellite communication channels at Q-band in high latitude,” IEEE Access, vol. 7, pp. 137 691–137 703, 2019.

    Google Scholar 

  29. L. Bai, Q. Xu, Z. Huang, S. Wu, S. Ventouras, G. Goussetis, and X. Cheng, “An atmospheric data-driven Q-band satellite channel model with feature selection,” IEEE Transactions on Antennas and Propagation, vol. 70, no. 6, pp. 4002–4013, 2022.

    Article  Google Scholar 

  30. S. Zheng, W. Liu, Z. Deng, K. Wang, W. Lin, J. Lei, Y. Jin, and H. Liu, “A modified s-band satellite channel simulation model,” in 2021 IEEE 4th International Conference on Electronics Technology (ICET), 2021, pp. 722–726.

    Google Scholar 

  31. I. Recommendation, “Propagation data required for the design of earth-space land mobile telecommunication systems,” International Telecommunication Union, pp. 681–686, 2009.

    Google Scholar 

  32. P. Series, “Propagation data and prediction methods required for the design of earth-space telecommunication systems,” Recommendation ITU-R, pp. 618–12, 2015.

    Google Scholar 

  33. Z. Ma, B. Ai, R. He, G. Wang, Y. Niu, and Z. Zhong, “A wideband non-stationary air-to-air channel model for UAV communications,” IEEE Transactions on Vehicular Technology, vol. 69, no. 2, pp. 1214–1226, 2019.

    Article  Google Scholar 

  34. R. Amorim, H. Nguyen, P. Mogensen, I. Z. Kovács, J. Wigard, and T. B. Sørensen, “Radio channel modeling for UAV communication over cellular networks,” IEEE Wireless Communications Letters, vol. 6, no. 4, pp. 514–517, 2017.

    Article  Google Scholar 

  35. M. M. Azari, F. Rosas, K.-C. Chen, and S. Pollin, “Ultra reliable UAV communication using altitude and cooperation diversity,” IEEE Transactions on Communications, vol. 66, no. 1, pp. 330–344, 2017.

    Article  Google Scholar 

  36. 3GPP, “Study on enhanced LTE support for aerial vehicles,” 2017.

    Google Scholar 

  37. ——, “Study on channel model for frequencies from 0.5 to 100 GHz,” 2017.

    Google Scholar 

  38. N. Saeed, H. Almorad, H. Dahrouj, T. Y. Al-Naffouri, J. S. Shamma, and M.-S. Alouini, “Point-to-point communication in integrated satellite-aerial 6G networks: State-of-the-art and future challenges,” IEEE Open Journal of the Communications Society, vol. 2, pp. 1505–1525, 2021.

    Article  Google Scholar 

  39. 3GPP, “Solutions for NR to support non-terrestrial networks (NTN),” 2021.

    Google Scholar 

  40. S. Berrezzoug, F. T. Bendimerad, and A. Boudjemai, “Communication satellite link budget optimization using gravitational search algorithm,” in 2015 3rd International Conference on Control, Engineering Information Technology (CEIT), 2015, pp. 1–7.

    Google Scholar 

  41. A. Guidotti, A. Vanelli-Coralli, A. Mengali, and S. Cioni, “Non-terrestrial networks: Link budget analysis,” in ICC 2020 - 2020 IEEE International Conference on Communications (ICC), 2020, pp. 1–7.

    Google Scholar 

  42. 3GPP, “Study on new radio (NR) to support non-terrestrial networks,” 2020.

    Google Scholar 

  43. L. J. Ippolito, Satellite Orbits, 2008, pp. 19–36.

    Google Scholar 

  44. D. Roddy, Satellite Communications, McGraw Hill, New York, 2006.

    Google Scholar 

  45. 3GPP, “CR to TR 38.901 for remaining open issues in iiot channel modelling,” 2019.

    Google Scholar 

  46. S. D. Ilcev, “Space division multiple access (SDMA) applicable for mobile satellite communications,” in 2011 10th International Conference on Telecommunication in Modern Satellite Cable and Broadcasting Services (TELSIKS), vol. 2, 2011, pp. 693–696.

    Google Scholar 

  47. R. Mulinde, T. F. Rahman, and C. Sacchi, “Constant-envelope SC-FDMA for nonlinear satellite channels,” in 2013 IEEE Global Communications Conference (GLOBECOM), 2013, pp. 2939–2944.

    Google Scholar 

  48. S. D. Lcev, “Time division multiple access (TDMA) applicable for mobile satellite communications,” in 2011 21st International Crimean Conference “Microwave Telecommunication Technology”, 2011, pp. 365–367.

    Google Scholar 

  49. P. Monsen, “Multiple-access capacity in mobile user satellite systems,” IEEE Journal on Selected Areas in Communications, vol. 13, no. 2, pp. 222–231, 1995.

    Article  Google Scholar 

  50. S. M. R. Islam, N. Avazov, O. A. Dobre, and K.-s. Kwak, “Power-domain non-orthogonal multiple access (NOMA) in 5G systems: Potentials and challenges,” IEEE Communications Surveys and Tutorials, vol. 19, no. 2, pp. 721–742, 2017.

    Article  Google Scholar 

  51. L. Bai, L. Zhu, X. Zhang, W. Zhang, and Q. Yu, “Multi-satellite relay transmission in 5G: Concepts, techniques, and challenges,” IEEE Network, vol. 32, no. 5, pp. 38–44, 2018.

    Article  Google Scholar 

  52. P. Li and J. Xu, “Fundamental rate limits of UAV-enabled multiple access channel with trajectory optimization,” IEEE Transactions on Wireless Communications, vol. 19, no. 1, pp. 458–474, 2020.

    Article  Google Scholar 

  53. 3GPP, “Radio resource control (RRC) protocol specification,” 2019.

    Google Scholar 

  54. L. Gupta, R. Jain, and G. Vaszkun, “Survey of important issues in UAV communication networks,” IEEE Communications Surveys and Tutorials, vol. 18, no. 2, pp. 1123–1152, 2015.

    Article  Google Scholar 

  55. Y. I. Demir, M. S. J. Solaija, and H. Arslan, “On the performance of handover mechanisms for non-terrestrial networks,” arXiv preprint arXiv:2201.04904, 2022.

    Google Scholar 

  56. E. Juan, M. Lauridsen, J. Wigard, and P. E. Mogensen, “5G new radio mobility performance in LEO-based non-terrestrial networks,” in 2020 IEEE Globecom Workshops (GC Wkshps), 2020, pp. 1–6.

    Google Scholar 

  57. S. Park and J. Kim, “Trends in LEO satellite handover algorithms,” in 2021 Twelfth International Conference on Ubiquitous and Future Networks (ICUFN), 2021, pp. 422–425.

    Google Scholar 

  58. 3GPP, “Discussion on earth fixed vs. earth moving cells in NTN LEO,” 2019.

    Google Scholar 

  59. S. He, T. Wang, and S. Wang, “Load-aware satellite handover strategy based on multi-agent reinforcement learning,” in GLOBECOM 2020-2020 IEEE Global Communications Conference, 2020, pp. 1–6.

    Google Scholar 

  60. Y. Li, W. Zhou, and S. Zhou, “Forecast based handover in an extensible multi-layer leo mobile satellite system,” IEEE Access, vol. 8, pp. 42 768–42 783, 2020.

    Google Scholar 

  61. C. Zhang, C. Jiang, L. Kuang, J. Jin, Y. He, and Z. Han, “Spatial spectrum sharing for satellite and terrestrial communication networks,” IEEE Transactions on Aerospace and Electronic Systems, vol. 55, no. 3, pp. 1075–1089, 2019.

    Article  Google Scholar 

  62. E. Lagunas, C. G. Tsinos, S. K. Sharma, and S. Chatzinotas, “5G cellular and fixed satellite service spectrum coexistence in c-band,” IEEE Access, vol. 8, pp. 72 078–72 094, 2020.

    Google Scholar 

  63. A. Ugolini, Y. Zanettini, A. Piemontese, A. Vanelli-Coralli, and G. Colavolpe, “Efficient satellite systems based on interference management and exploitation,” in 2016 50th Asilomar Conference on Signals, Systems and Computers, 2016, pp. 492–496.

    Google Scholar 

  64. S. K. Sharma, S. Chatzinotas, and B. Ottersten, “Transmit beamforming for spectral coexistence of satellite and terrestrial networks,” in 8th International Conference on Cognitive Radio Oriented Wireless Networks, 2013, pp. 275–281.

    Google Scholar 

  65. E. Lagunas, S. K. Sharma, S. Maleki, S. Chatzinotas, and B. Ottersten, “Resource allocation for cognitive satellite communications with incumbent terrestrial networks,” IEEE Transactions on Cognitive Communications and Networking, vol. 1, no. 3, pp. 305–317, 2015.

    Article  Google Scholar 

  66. S. Chatzinotas, S. K. Sharma, and B. Ottersten, “Frequency packing for interference alignment-based cognitive dual satellite systems,” in 2013 IEEE 78th Vehicular Technology Conference (VTC Fall), 2013, pp. 1–7.

    Google Scholar 

  67. L. Zhong, D. Zhou, R. Liu, X. Wang, and X. Meng, “The feasibility of coexistence between IMT-2020 and inter-satellite service in 26GHz band,” in 2020 International Wireless Communications and Mobile Computing (IWCMC), 2020, pp. 1006–1011.

    Google Scholar 

  68. S. Zhang, Y. Zeng, and R. Zhang, “Cellular-enabled UAV communication: A connectivity-constrained trajectory optimization perspective,” IEEE Transactions on Communications, vol. 67, no. 3, pp. 2580–2604, 2018.

    Article  Google Scholar 

  69. E. Bulut and I. Guevenc, “Trajectory optimization for cellular-connected UAVs with disconnectivity constraint,” in 2018 IEEE International Conference on Communications Workshops (ICC Workshops), 2018, pp. 1–6.

    Google Scholar 

  70. A. Rahmati, S. Hosseinalipour, Y. Yapıcı, X. He, I. Güvenç, H. Dai, and A. Bhuyan, “Dynamic interference management for UAV-assisted wireless networks,” IEEE Transactions on Wireless Communications, vol. 21, no. 4, pp. 2637–2653, 2021.

    Article  Google Scholar 

  71. S. Zhang, S. Shi, S. Gu, and X. Gu, “Power control and trajectory planning based interference management for UAV-assisted wireless sensor networks,” IEEE Access, vol. 8, pp. 3453–3464, 2019.

    Article  Google Scholar 

  72. M. Radmanesh, M. Kumar, P. H. Guentert, and M. Sarim, “Overview of path-planning and obstacle avoidance algorithms for UAVs: A comparative study,” Unmanned systems, vol. 6, no. 02, pp. 95–118, 2018.

    Article  Google Scholar 

  73. Y. Zeng, X. Xu, S. Jin, and R. Zhang, “Simultaneous navigation and radio mapping for cellular-connected UAV with deep reinforcement learning,” IEEE Transactions on Wireless Communications, vol. 20, no. 7, pp. 4205–4220, 2021.

    Article  Google Scholar 

  74. Y. Huang and Y. Zeng, “Simultaneous environment sensing and channel knowledge mapping for cellular-connected UAV,” in 2021 IEEE Globecom Workshops (GC Wkshps), 2021, pp. 1–6.

    Google Scholar 

  75. N. Gao, Y. Zeng, J. Wang, D. Wu, C. Zhang, Q. Song, J. Qian, and S. Jin, “Energy model for UAV communications: experimental validation and model generalization,” China Communications, vol. 18, no. 7, pp. 253–264, 2021.

    Article  Google Scholar 

  76. M. Giordani and M. Zorzi, “Non-terrestrial networks in the 6G era: Challenges and opportunities,” IEEE Network, vol. 35, no. 2, pp. 244–251, 2021.

    Article  Google Scholar 

  77. F. Rinaldi, H.-L. Maattanen, J. Torsner, S. Pizzi, S. Andreev, A. Iera, Y. Koucheryavy, and G. Araniti, “Non-terrestrial networks in 5G beyond: A survey,” IEEE Access, vol. 8, pp. 165 178–165 200, 2020.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under grant 62071114 and 62172339.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Zeng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, X., Huang, Y., Zhan, C., Zeng, Y. (2024). Non-terrestrial Network. In: Lin, X., Zhang, J., Liu, Y., Kim, J. (eds) Fundamentals of 6G Communications and Networking. Signals and Communication Technology. Springer, Cham. https://doi.org/10.1007/978-3-031-37920-8_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-37920-8_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-37919-2

  • Online ISBN: 978-3-031-37920-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics