Skip to main content

6G: Vision, Applications, and Challenges

  • Chapter
  • First Online:
Fundamentals of 6G Communications and Networking

Abstract

Global initiative and research on 6G have grown rapidly since 2018. The rollout of 5G is driving our life, industry, and society toward a connected and smart world. 6G is envisioned not only as a successor but also as a disruptor of 5G. It will further enhance the capability, energy and spectral efficiencies, and quality of experience and will also bring a fully intelligent, secure, and sustainable world. In this chapter, we will provide our vision on what 6G will be as well as its potential applications and main challenges for its successful implementation. We will start by presenting a brief overview of 5G technologies and the inherent standardization process, along with some discussions on the capability gaps toward 2030. A preliminary discussion on 6G objectives, technologies, and roadmap will be first provided. After this introductory part, this chapter will discuss more in-depth our vision toward 6G. In particular, the enabling technologies and challenges for guaranteeing (i) all things sensed and connected, (ii) all things intelligent, (iii) all things sustainable, and (iv) all things secured will be discussed. The chapter will be concluded by summarizing the main technologies toward 6G.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. E. Dahlman, S. Parkvall and J. Skold, 5G NR: The Next Generation Wireless Access Technology, 2nd Ed., Elsevier, 2021.

    Google Scholar 

  2. H. Holma, A. Toskala and T. Nakamura, 5G Technology: 3GPP New Radio, Wiley, 2019.

    Google Scholar 

  3. 3GPP, “Release 15 Description; Summary of Rel-15 Work Items,” TR 21.915 v15.0.0, October 2019.

    Google Scholar 

  4. 3GPP, “Release 16 Description; Summary of Rel-16 Work Items,” TR 21.916 v16.2.0, June 2022.

    Google Scholar 

  5. 3GPP, “Release 17 Description; Summary of Rel-17 Work Items,” TR 21.917 v1.0.0, September 2022.

    Google Scholar 

  6. W. Chen, J. Montojo, J. Lee, M. Shafi and Y. Kim, “The Standardization of 5G-Advanced in 3GPP,” in IEEE Communications Magazine, https://doi.org/10.1109/MCOM.005.2200074.

  7. Nokia, “5G evolution: Learn what is behind it and how it paves the way toward 5G-Advanced,” 2022. [Online]. Available: https://www.nokia.com/networks/5g/5g-advanced/.

  8. M. Chafii, F. Bader and J. Palicot, “Enhancing coverage in narrow band-IoT using machine learning,” 2018 IEEE Wireless Communications and Networking Conference (WCNC), 2018, pp. 1-6, https://doi.org/10.1109/WCNC.2018.8377263.

  9. N. Promwongsa et al., “A comprehensive survey of the tactile internet: State-of-the-art and research directions,” IEEE Communications Surveys & Tutorials, vol. 23, no. 1, pp. 472–523, 2020.

    Article  Google Scholar 

  10. W. Saad, M. Bennis, and M. Chen, “A vision of 6G wireless systems: Applications, trends, technologies, and open research problems,” IEEE network, vol. 34, no. 3, pp. 134–142, 2019

    Article  Google Scholar 

  11. M. Latva-aho, K. Leppänen, F. Clazzer, and A. Munari, “Key drivers and research challenges for 6G ubiquitous wireless intelligence,” 2020.

    Google Scholar 

  12. W. Tong and P. Zhu, Eds., 6G: “The Next Horizon: From Connected People and Things to Connected Intelligence.” Cambridge: Cambridge University Press, 2021.

    Google Scholar 

  13. H. Viswanathan and P. E. Mogensen, “Communications in the 6G Era,” in IEEE Access, vol. 8, pp. 57063-57074, 2020, https://doi.org/10.1109/ACCESS.2020.2981745.

    Article  Google Scholar 

  14. M. A. Uusitalo et al., “6G Vision, Value, Use Cases and Technologies From European 6G Flagship Project Hexa-X,” IEEE Access, vol. 9, pp. 160004–160020, 2021.

    Article  Google Scholar 

  15. Bazzi, A., & Chafii, M. (2022). On Outage-based Beamforming Design for Dual-Functional Radar-Communication 6G Systems. arXiv preprint arXiv:2207.04921.

    Google Scholar 

  16. Y. Lu and X. Zheng, “6G: A survey on technologies, scenarios, challenges, and the related issues,” Journal of Industrial Information Integration, vol. 19, p. 100158, 2020.

    Article  Google Scholar 

  17. L. U. Khan, W. Saad, D. Niyato, Z. Han, and C. S. Hong, “Digital-twin-enabled 6G: Vision, architectural trends, and future directions,” IEEE Communications Magazine, vol. 60, no. 1, pp. 74–80, 2022.

    Article  Google Scholar 

  18. L. Bariah et al., “A prospective look: Key enabling technologies, applications and open research topics in 6G networks,” IEEE access, vol. 8, pp. 174792–174820, 2020.

    Article  Google Scholar 

  19. B. Zong, C. Fan, X. Wang, X. Duan, B. Wang, and J. Wang, “6G Technologies: Key Drivers, Core Requirements, System Architectures, and Enabling Technologies,” IEEE Vehicular Technology Magazine, vol. 14, no. 3, pp. 18–27, 2019, https://doi.org/10.1109/MVT.2019.2921398.

    Article  Google Scholar 

  20. S. Hazra and A. Santra, “Robust Gesture Recognition Using Millimetric-Wave Radar System,” IEEE Sensors Letters, vol. 2, pp. 1–4,, December 2018.

    Article  Google Scholar 

  21. H. Durrant-Whyte and T. Bailey, “Simultaneous localization and mapping: part I,” in IEEE Robotics & Automation Magazine, vol. 13, no. 2, pp. 99-110, June 2006, https://doi.org/10.1109/MRA.2006.1638022.

    Article  Google Scholar 

  22. J. Neu and C. A. Schmuttenmaer, “Tutorial: An introduction to terahertz time domain spectroscopy (THz-TDS),” Journal of Applied Physics, vol. 124, no. 23, p. 231101, 2018.

    Google Scholar 

  23. B. Yektakhah and K. Sarabandi, “All-Directions Through-the-Wall Imaging Using a Small Number of Moving Omnidirectional Bi-Static FMCW Transceivers,” IEEE Transactions on Geoscience and Remote Sensing, vol. 57, pp. 2618–2627, May 2019.

    Article  Google Scholar 

  24. J. Guan, S. Madani, S. Jog, S. Gupta, and H. Hassanieh, “Through Fog High-Resolution Imaging Using Millimeter Wave Radar,” Jun. 2020.

    Google Scholar 

  25. G. Liu et al., “Vision, requirements and network architecture of 6G mobile network beyond 2030,” in China Communications, vol. 17, no. 9, pp. 92-104, Sept. 2020, https://doi.org/10.23919/JCC.2020.09.008.

    Article  Google Scholar 

  26. A. Schwind, W. Hofmann, R. Stephan, R. S. Thomä and M. A. Hein, “Bi-static Nearfield Calibration for RCS Measurements in the C-V2X Frequency Range,” in 2020 14th EuCAP, 2020.

    Google Scholar 

  27. W. Li, M. J. Bocus, C. Tang, R. J. Piechocki, K. Woodbridge and K. Chetty, “On CSI and Passive Wi-Fi Radar for Opportunistic Physical Activity Recognition,” in IEEE Transactions on Wireless Communications.

    Google Scholar 

  28. I. B. F. de Almeida, M. Chafii, A. Nimr and G. Fettweis, “Blind Transmitter Localization in Wireless Sensor Networks: A Deep Learning Approach,” 2021 IEEE 32nd Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), 2021, pp. 1241-1247, https://doi.org/10.1109/PIMRC50174.2021.9569361.

  29. Z. Li, A. Nimr, P. Schulz and G. Fettweis, “Superresolution Wireless Multipath Channel Path Delay Estimation for CIR-Based Localization,” 2022 IEEE Wireless Communications and Networking Conference (WCNC), 2022, pp. 1940-1945, https://doi.org/10.1109/WCNC51071.2022.9771756.

  30. T. S. Rappaport, “Wireless Communications and Applications Above 100 GHz: Opportunities and Challenges for 6G and Beyond,” IEEE Access, vol. 7, pp. 78729–78757, 2019

    Article  Google Scholar 

  31. B. Hattenhorst, S. M. Schnurre, T. Hülser, C. Baer and T. Musch, “Contactless Flame Reactor State Parameter Investigation Using a Broadband mmWave Radar,” IEEE Sensors Letters, vol. 4, pp. 1–4, May 2020.

    Article  Google Scholar 

  32. M. Matinmikko-Blue, S. Yrjölä and P. Ahokangas, “Spectrum Management in the 6G Era: The Role of Regulation and Spectrum Sharing,” 2020 2nd 6G Wireless Summit (6G SUMMIT), 2020, pp. 1-5, https://doi.org/10.1109/6GSUMMIT49458.2020.9083851.

  33. F. Nizzi et al., “Data dissemination to vehicles using 5G and VLC for Smart Cities,” 2019 AEIT International Annual Conference (AEIT), Florence, Italy, 2019, pp. 1-5.

    Google Scholar 

  34. M. Asad Ullah, K. Mikhaylov and H. Alves, “Massive Machine-Type Communication and Satellite Integration for Remote Areas,” in IEEE Wireless Communications, vol. 28, no. 4, pp. 74-80, August 2021, https://doi.org/10.1109/MWC.100.2000477.

    Article  Google Scholar 

  35. S. Zhang, J. Liu, H. Guo, M. Qi and N. Kato, “Envisioning Device-to-Device Communications in 6G,” in IEEE Network, vol. 34, no. 3, pp. 86-91, May/June 2020, https://doi.org/10.1109/MNET.001.1900652.

  36. W. Cheng, W. Zhang, H. Jing, S. Gao and H. Zhang, “Orbital Angular Momentum for Wireless Communications,” in IEEE Wireless Communications, vol. 26, no. 1, pp. 100-107, February 2019, https://doi.org/10.1109/MWC.2017.1700370.

    Article  Google Scholar 

  37. V. Mishra, M. R. B. Shankar, V. Koivunen, B. Ottersten and S. A. Vorobyov, “Toward Millimeter-Wave Joint Radar Communications: A Signal Processing Perspective,” IEEE Signal Processing Magazine, vol. 36, pp. 100–114, September 2019.

    Article  Google Scholar 

  38. E. Basar, M. Di Renzo, J. De Rosny, M. Debbah, M. Alouini, and R. Zhang, “Wireless Communications Through Reconfigurable Intelligent Surfaces,” IEEE Access, vol. 7, pp. 116 753–116 773, 2019.

    Google Scholar 

  39. J. Hu, H. Zhang, B. Di, L. Li, L. Song, Y. Li, Z. Han, and H. V. Poor, “Reconfigurable Intelligent Surfaces based RF Sensing: Design, Optimization, and Implementation,” arXiv preprint arXiv:1912.09198, pp. 1–30, 2019.

    Google Scholar 

  40. A. Pizzo, T. L. Marzetta, and L. Sanguinetti, “Spatially-Stationary Model for Holographic MIMO Small-Scale Fading,” IEEE J. Sel. Areas Commun., vol. 38, no. 9, pp. 1964–1979, 2020.

    Article  Google Scholar 

  41. G. P. Fettweis and H. Boche, “6G: The Personal Tactile Internet–And Open Questions for Information Theory,” in IEEE BITS the Information Theory Magazine, vol. 1, no. 1, pp. 71-82, 1 Sept. 2021, https://doi.org/10.1109/MBITS.2021.3118662.

  42. R. Bomfin, A. Nimr, M. Chafii and G. Fettweis, “A Robust and Low-Complexity Walsh-Hadamard Modulation for Doubly-Dispersive Channels,” in IEEE Communications Letters, vol. 25, no. 3, pp. 897-901, March 2021, https://doi.org/10.1109/LCOMM.2020.3034429.

    Article  Google Scholar 

  43. I. Bizon Franco de Almeida, M. Chafii, A. Nimr and G. Fettweis, “Alternative Chirp Spread Spectrum Techniques for LPWANs,” in IEEE Transactions on Green Communications and Networking, vol. 5, no. 4, pp. 1846-1855, Dec. 2021, https://doi.org/10.1109/TGCN.2021.3085477.

  44. P. Neuhaus, M. Dörpinghaus and G. Fettweis, “Zero-Crossing Modulation for Wideband Systems Employing 1-Bit Quantization and Temporal Oversampling: Transceiver Design and Performance Evaluation,” in IEEE Open Journal of the Communications Society, vol. 2, pp. 1915-1934, 2021, https://doi.org/10.1109/OJCOMS.2021.3094927.

    Article  Google Scholar 

  45. F. Roth et al., “Spike-Based Sensing and Communication for Highly Energy-Efficient Sensor Edge Nodes,” 2022 2nd IEEE International Symposium on Joint Communications & Sensing (JC&S), 2022, pp. 1-6, https://doi.org/10.1109/JCS54387.2022.974350

  46. Z. Xiao, P. Xia and X. -G. Xia, “Full-Duplex Millimeter-Wave Communication,” in IEEE Wireless Communications, vol. 24, no. 6, pp. 136-143, Dec. 2017, https://doi.org/10.1109/MWC.2017.1700058

    Article  Google Scholar 

  47. M. Sigmund, R. Bomfin, M. Chafii, A. Nimr and G. Fettweis, “Iterative Receiver for Power-Domain NOMA with Mixed Waveforms,” 2022 IEEE Wireless Communications and Networking Conference (WCNC), 2022, pp. 602-607, https://doi.org/10.1109/WCNC51071.2022.9771625.

  48. O. Dizdar, Y. Mao, W. Han and B. Clerckx, “Rate-Splitting Multiple Access: A New Frontier for the PHY Layer of 6G,” 2020 IEEE 92nd Vehicular Technology Conference (VTC2020-Fall), 2020, pp. 1-7, https://doi.org/10.1109/VTC2020-Fall49728.2020.9348672.

  49. C. E. Shannon, “Programming a Computer for Playing Chess,” 1950.

    Google Scholar 

  50. J. Mitola and G. Q. Maguire, “Cognitive radio: making software radios more personal,” in IEEE Personal Communications, vol. 6, no. 4, pp. 13-18, Aug. 1999, https://doi.org/10.1109/98.788210.

    Article  Google Scholar 

  51. D. Grace and H. Zhang, “Cognitive Communications: Distributed Artificial Intelligence (DAI), Regulatory Policy and Economics, Implementation,” Wiley, 2012.

    Book  Google Scholar 

  52. J. Hoydis, F. A. Aoudia, A. Valcarce and H. Viswanathan, “Toward a 6G AI-Native Air Interface,” in IEEE Communications Magazine, vol. 59, no. 5, pp. 76-81, May 2021, https://doi.org/10.1109/MCOM.001.2001187.

    Article  Google Scholar 

  53. A. Valcarce and J. Hoydis, “Toward Joint Learning of Optimal MAC Signaling and Wireless Channel Access,” in IEEE Transactions on Cognitive Communications and Networking, vol. 7, no. 4, pp. 1233-1243, Dec. 2021, https://doi.org/10.1109/TCCN.2021.3080677.

    Article  Google Scholar 

  54. M. A. Uusitalo et al., “6G Vision, Value, Use Cases and Technologies From European 6G Flagship Project Hexa-X,” in IEEE Access, vol. 9, pp. 160004-160020, 2021, https://doi.org/10.1109/ACCESS.2021.3130030.

    Article  Google Scholar 

  55. O. Ye et al., “The Next Decade of Telecommunications Artificial Intelligence,” Dec 2021, https://arxiv.org/abs/2101.09163.

  56. M. Honkala, D. Korpi and J. M. J. Huttunen, “DeepRx: Fully Convolutional Deep Learning Receiver,” in IEEE Transactions on Wireless Communications, vol. 20, no. 6, pp. 3925-3940, June 2021, https://doi.org/10.1109/TWC.2021.3054520.

    Article  Google Scholar 

  57. L. Huang, H. Zhang, R. Li, Y. Ge and J. Wang, “AI Coding: Learning to Construct Error Correction Codes,” in IEEE Transactions on Communications, vol. 68, no. 1, pp. 26-39, Jan. 2020, https://doi.org/10.1109/TCOMM.2019.2951403.

    Article  Google Scholar 

  58. H. Seo, J. Park, M. Bennis, and M. Debbah, “Semantics-native communication with contextual reasoning,” 2021. [Online]. Available: https://arxiv.org/abs/2108.05681

  59. X. Luo, H.-H. Chen, and Q. Guo, “Semantic communications: Overview, open issues, and future research directions,” IEEE Wireless Communications, vol. 29, no. 1, pp. 210–219, 2022.

    Article  Google Scholar 

  60. J.-C. Belfiore and D. Bennequin, “Topos and stacks of deep neural networks,” 2021. [Online]. Available: https://arxiv.org/abs/2106.14587

  61. E. Bourtsoulatze, D. B. Kurka, and D. Gündüz, “Deep joint source channel coding for wireless image transmission,” in ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2019, pp. 4774–4778.

    Google Scholar 

  62. N. Farsad, M. Rao and A. Goldsmith, “Deep Learning for Joint Source-Channel Coding of Text,” 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2018, pp. 2326-2330, https://doi.org/10.1109/ICASSP.2018.8461983.

  63. S. Wu, G. Tsoukaneri and B. Mouhouche, “Q-Learning based Link Adaptation in 5G,” 2020 IEEE 31st Annual International Symposium on Personal, Indoor and Mobile Radio Communications, 2020, pp. 1-6, https://doi.org/10.1109/PIMRC48278.2020.9217256.

  64. P. Kela, T. Höhne, T. Veijalainen and H. Abdulrahman, “Reinforcement Learning for Delay Sensitive Uplink Outer-Loop Link Adaptation,” 2022 Joint European Conference on Networks and Communications and 6G Summit (EuCNC/6G Summit), 2022, pp. 59-64, https://doi.org/10.1109/EuCNC/6GSummit54941.2022.9815746.

  65. M. Mitev, M. M. Butt, P. Sehier, A. Chorti, L. Rose and A. Lehti, “Smart Link Adaptation and Scheduling for IIoT,” in IEEE Networking Letters, vol. 4, no. 1, pp. 6-10, March 2022, https://doi.org/10.1109/LNET.2022.3144733.

    Article  Google Scholar 

  66. J. Song, I. Z. Kovács, M. Butt, J. Steiner and K. I. Pedersen, “Intra-RAN Online Distributed Reinforcement Learning For Uplink Power Control in 5G Cellular Networks,” 2022 IEEE 95th Vehicular Technology Conference: (VTC2022-Spring), 2022, pp. 1-7, https://doi.org/10.1109/VTC2022-Spring54318.2022.9860770.

  67. Q. Zhao, S. Paris, T. Veijalainen and S. Ali, “Hierarchical Multi-Objective Deep Reinforcement Learning for Packet Duplication in Multi-Connectivity for URLLC,” 2021 Joint European Conference on Networks and Communications & 6G Summit (EuCNC/6G Summit), 2021, pp. 142-147, https://doi.org/10.1109/EuCNC/6GSummit51104.2021.9482453.

  68. J. J. Hernández-Carlén, J. Pérez-Romero, O. Sallent, I. Vilà and F. Casadevall, “A Deep Q-Network-Based Algorithm for Multi-Connectivity Optimization in Heterogeneous Cellular-Networks,” in Sensors, vol. 22, no. 16, August 2022, https://doi.org/10.3390/s22166179.

  69. A. Masri, T. Veijalainen, H. Martikainen, S. Mwanje, J. Ali-Tolppa and M. Kajó, “Machine-Learning-Based Predictive Handover,” 2021 IFIP/IEEE International Symposium on Integrated Network Management (IM), 2021, pp. 648-652.

    Google Scholar 

  70. A. Prado, H. Vijayaraghavan and W. Kellerer, “ECHO: Enhanced Conditional Handover boosted by Trajectory Prediction,” 2021 IEEE Global Communications Conference (GLOBECOM), 2021, pp. 01-06, https://doi.org/10.1109/GLOBECOM46510.2021.9685348.

  71. Njima W, Chafii M, Chorti A, Shubair RM, Poor HV. Indoor localization using data augmentation via selective generative adversarial networks. IEEE Access. 2021 Jul 8;9:98337-47.

    Article  Google Scholar 

  72. Njima W, Bazzi A, Chafii M. DNN-based Indoor Localization Under Limited Dataset using GANs and Semi-Supervised Learning. IEEE Access. 2022 Jul 1;10:69896-909.

    Article  Google Scholar 

  73. A. Decurninge et al., “CSI-based Outdoor Localization for Massive MIMO: Experiments with a Learning Approach,” 2018 15th International Symposium on Wireless Communication Systems (ISWCS), 2018, pp. 1-6, https://doi.org/10.1109/ISWCS.2018.8491210.

  74. S. Kadambi et al., “Neural RF SLAM for unsupervised positioning and mapping with channel state information,” ICC 2022 - IEEE International Conference on Communications, 2022, pp. 3238-3244, https://doi.org/10.1109/ICC45855.2022.9838367.

  75. A. Alkhateeb, G. Charan, T. Osman, A. Hredzak, and N. Srinivas, “DeepSense 6G: large-scale real-world multi-modal sensing and communication datasets,” to be available on arXiv, 2022. [Online]. Available: https://www.DeepSense6G.net

  76. G. Charan, T. Osman, A. Hredzak, N. Thawdar and A. Alkhateeb, “Vision-Position Multi-Modal Beam Prediction Using Real Millimeter Wave Datasets,” 2022 IEEE Wireless Communications and Networking Conference (WCNC), 2022, pp. 2727-2731, https://doi.org/10.1109/WCNC51071.2022.9771835.

  77. S. Wu, C. Chakrabarti and A. Alkhateeb, “LiDAR-Aided Mobile Blockage Prediction in Real-World Millimeter Wave Systems,” 2022 IEEE Wireless Communications and Networking Conference (WCNC), 2022, pp. 2631-2636, https://doi.org/10.1109/WCNC51071.2022.9771651.

  78. T. Nishio, Y. Koda, J. Park, M. Bennis and K. Doppler, “When Wireless Communications Meet Computer Vision in Beyond 5G,” in IEEE Communications Standards Magazine, vol. 5, no. 2, pp. 76-83, June 2021, https://doi.org/10.1109/MCOMSTD.001.2000047.

    Article  Google Scholar 

  79. R. Li et al., “Deep Reinforcement Learning for Resource Management in Network Slicing,” in IEEE Access, vol. 6, pp. 74429-74441, 2018, https://doi.org/10.1109/access.2018.2881964.

    Article  Google Scholar 

  80. K. Mehmood et al., “Intent-driven Autonomous Network and Service Management in Future Networks: A Structured Literature Review,” Computer Networks, 2021, https://doi.org/10.48550/ARXIV.2108.04560.

    Google Scholar 

  81. M. K. Shehzad, L. Rose, M. M. Butt, I. Z. Kovács, M. Assaad and M. Guizani, “Artificial Intelligence for 6G Networks: Technology Advancement and Standardization,” in IEEE Vehicular Technology Magazine, vol. 17, no. 3, pp. 16-25, Sept. 2022, https://doi.org/10.1109/MVT.2022.3164758.

    Article  Google Scholar 

  82. Y. Yang et al., “6G Network AI Architecture for Everyone-Centric Customized Services,” 2022, https://doi.org/10.48550/ARXIV.2205.09944.

  83. A. Tak and S. Cherkaoui, “Federated Edge Learning: Design Issues and Challenges,” in IEEE Network, vol. 35, no. 2, pp. 252-258, March/April 2021, https://doi.org/10.1109/MNET.011.2000478.

  84. W. Liu, X. Zang, Y. Li and B. Vucetic, “Over-the-Air Computation Systems: Optimization, Analysis and Scaling Laws,” in IEEE Transactions on Wireless Communications, vol. 19, no. 8, pp. 5488-5502, Aug. 2020, https://doi.org/10.1109/TWC.2020.2993703.

    Article  Google Scholar 

  85. S. Savazzi, M. Nicoli and V. Rampa, “Federated Learning With Cooperating Devices: A Consensus Approach for Massive IoT Networks,” in IEEE Internet of Things Journal, vol. 7, no. 5, pp. 4641-4654, May 2020, https://doi.org/10.1109/JIOT.2020.2964162.

    Article  Google Scholar 

  86. L. Barbieri, S. Savazzi and M. Nicoli, “Decentralized Federated Learning for Road User Classification in Enhanced V2X Networks,” 2021 IEEE International Conference on Communications Workshops (ICC Workshops), 2021, pp. 1-6, https://doi.org/10.1109/ICCWorkshops50388.2021.9473581.

  87. I. Kajic et al., “Learning to cooperate: Emergent communication in multi-agent navigation,” 2020, https://doi.org/10.48550/ARXIV.2004.01097.

  88. H. Xie, Z. Qin, G. Y. Li, and B.-H. Juang, “Deep learning enabled semantic communication systems,” IEEE Transactions on Signal Processing, vol. 69, pp. 2663–2675, 2021.

    Article  MathSciNet  MATH  Google Scholar 

  89. P. Jiang, C.-K. Wen, S. Jin, and G. Y. Li, “Deep source-channel coding for sentence semantic transmission with HARQ,” IEEE Transactions on Communications, pp. 1–1, 2022.

    Google Scholar 

  90. E. C. Strinati and S. Barbarossa, “6g networks: Beyond shannon towards semantic and goal-oriented communications,” 2020. [Online]. Available: https://arxiv.org/abs/2011.14844

  91. Q. Zhou, R. Li, Z. Zhao, C. Peng, and H. Zhang, “Semantic communication with adaptive universal transformer,” 2021. [Online]. Available: https://arxiv.org/abs/2108.09119

  92. K. Lu, Q. Zhou, R. Li, Z. Zhao, X. Chen, J. Wu, and H. Zhang, “Rethinking modern communication from semantic coding to semantic communication,” IEEE Wireless Communications, pp. 1–13, 2022.

    Google Scholar 

  93. J. Dai, S. Wang, K. Tan, Z. Si, X. Qin, K. Niu, and P. Zhang, “Nonlinear transform source-channel coding for semantic communications,” 2021. [Online]. Available: https://arxiv.org/abs/2112.10961

  94. Z. Weng, Z. Qin, X. Tao, C. Pan, G. Liu, and G. Y. Li, “Deep learning enabled semantic communications with speech recognition and synthesis,” 2022. [Online]. Available: https://arxiv.org/abs/2205.04603

  95. Y. Wang, Z. Gao, D. Zheng, S. Chen, D. Gündüz, and H. V. Poor, “Transformer-empowered 6g intelligent networks: From massive mimo processing to semantic communication,” 2022. [Online]. Available: https://arxiv.org/abs/2205.03770

  96. H. Xie and Z. Qin, “A lite distributed semantic communication system for internet of things,” IEEE Journal on Selected Areas in Communications, vol. 39, no. 1, pp. 142–153, 2021.

    Article  Google Scholar 

  97. C. K. Thomas and W. Saad, “Neuro-symbolic artificial intelligence (ai) for intent based semantic communication,” 2022. [Online]. Available: https://arxiv.org/abs/2205.10768

  98. M. Chehimi, C. Chaccour, and W. Saad, “Quantum semantic communications: An unexplored avenue for contextual networking,” 2022. [Online]. Available: https://arxiv.org/abs/2205.02422

  99. M. K. Farshbafan, W. Saad, and M. Debbah, “Curriculum learning for goal-oriented semantic communications with a common language,” 2022. [Online]. Available: https://arxiv.org/abs/2204.10429

  100. M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Vandergheynst, “Geometric deep learning: Going beyond euclidean data,” IEEE Signal Processing Magazine, vol. 34, no. 4, pp. 18–42, jul 2017.

    Google Scholar 

  101. Y. Feng, H. You, Z. Zhang, R. Ji, and Y. Gao, “Hypergraph neural networks,” 2018. [Online]. Available: https://arxiv.org/abs/1809.09401

  102. S. Ebli, M. Defferrard, and G. Spreemann, “Simplicial neural networks,” ArXiv, vol. abs/2010.03633, 2020.

    Google Scholar 

  103. M. Hajij, K. Istvan, and G. Zamzmi, “Cell complex neural networks,” 2020. [Online]. Available: https://arxiv.org/abs/2010.00743

  104. H. Zhang, N. Shlezinger, F. Guidi, D. Dardari, M. F. Imani, and Y. C. Eldar, “Near-field wireless power transfer for 6G internet of everything mobile networks: Opportunities and challenges,” IEEE Commun. Mag., vol. 60, no. 3, pp. 12–18, 2022.

    Article  Google Scholar 

  105. L. Gu, G. Zulauf, A. Stein, P. A. Kyaw, T. Chen, and J. M. R. Davila, “6.78-mhz wireless power transfer with self-resonant coils at 95\(\%\) dc–dc efficiency,” IEEE Trans. Power Electron., vol. 36, no. 3, pp. 2456–2460, 2021.

    Article  Google Scholar 

  106. J. Pries, V. P. N. Galigekere, O. C. Onar, and G.-J. Su, “A 50-kw three-phase wireless power transfer system using bipolar windings and series resonant networks for rotating magnetic fields,” IEEE Trans. Power Electron., vol. 35, no. 5, pp. 4500–4517, 2020.

    Article  Google Scholar 

  107. K. W. Choi, S. I. Hwang, A. A. Aziz, H. H. Jang, J. S. Kim, D. S. Kang, and D. I. Kim, “Simultaneous wireless information and power transfer (SWIPT) for internet of things: Novel receiver design and experimental validation,” IEEE Int. Things Journal, vol. 7, no. 4, pp. 2996–3012, 2020.

    Google Scholar 

  108. H. Stockman, “Communication by means of reflected power,” in IRE, vol. 36, no. 10, 1948, p. 1196–1204.

    Google Scholar 

  109. X. Lu, D. Niyato, H. Jiang, D. I. Kim, Y. Xiao, and Z. Han, “Ambient backscatter assisted wireless powered communications,” IEEE Wireless Commun., vol. 25, no. 2, pp. 170–177, 2018.

    Article  Google Scholar 

  110. N. Van Huynh, D. T. Hoang, X. Lu, D. Niyato, P. Wang, and D. I. Kim, “Ambient backscatter communications: A contemporary survey,” IEEE Commun. Surveys Tut., vol. 20, no. 4, pp. 2889–2922, 2018.

    Article  Google Scholar 

  111. M. D. Renzo, A. Zappone, M. Debbah, M. Alouini, C. Yuen, J. D. Rosny, and S. Tretyakov, “Smart radio environments empowered by reconfigurable intelligent surfaces: How it works, state of research, and road ahead,” IEEE J. Sel. Areas Commun., vol. 38, no. 11, 2020.

    Google Scholar 

  112. A. S. de Sena, D. Carrillo, F. Fang, P. H. J. Nardelli, D. B. d. Costa, U. S. Dias, Z. Ding, C. B. Papadias, and W. Saad, “What role do intelligent reflecting surfaces play in multi-antenna non-orthogonal multiple access?”, IEEE Wireless Commun., vol. 27, no. 5, pp. 24–31, Oct. 2020.

    Google Scholar 

  113. A. S. de Sena, P. H. J. Nardelli, D. B. da Costa, P. Popovski, and C. B. Papadias, “Rate-splitting multiple access and its interplay with intelligent reflecting surfaces,” Available at Early Access Issues, IEEE Commun. Mag., pp. 1–7, 2022.

    Google Scholar 

  114. C. Pan, H. Ren, K. Wang, M. Elkashlan, A. Nallanathan, J. Wang, and L. Hanzo, “Intelligent reflecting surface aided MIMO broadcasting for simultaneous wireless information and power transfer,” IEEE J. Sel. Areas Commun., vol. 38, no. 8, pp. 1719–1734, 2020.

    Article  Google Scholar 

  115. P. Ramezani and A. Jamalipour, “Backscatter-assisted wireless powered communication networks empowered by intelligent reflecting surface,” IEEE Trans. Veh. Technol., vol. 70, no. 11, pp. 11908–11922, 2021.

    Article  Google Scholar 

  116. W. Zhang, Y. Qin, W. Zhao, M. Jia, Q. Liu, R. He, and B. Ai, “A green paradigm for internet of things: Ambient backscatter communications,” China Commun., vol. 16, no. 7, pp. 109–119, 2019.

    Article  Google Scholar 

  117. W. Zhang, C.-X. Wang, X. Ge, and Y. Chen, “Enhanced 5G cognitive radio networks based on spectrum sharing and spectrum aggregation”, IEEE Trans. Commun., vol. 66, no. 12, pp. 6304–6316, 2018.

    Article  Google Scholar 

  118. G. K. Papageorgiou et al., “Advanced dynamic spectrum 5G mobile networks employing licensed shared access,” IEEE Commun. Mag., vol. 58, no. 7, pp. 21–27, 2020.

    Article  Google Scholar 

  119. H. Zeng, X. Zhu, Y. Jiang, Z. Wei, and L. Chen, “Hierarchical symbiotic transmission strategy with cooperative NOMA for cognitive radio networks,” IEEE Wireless Commun. Lett., vol. 11, no. 3, pp. 558–562, 2022.

    Article  Google Scholar 

  120. Y. H. Al-Badarneh, A. Elzanaty, and M.-S. Alouini, “On the performance of spectrum-sharing backscatter communication systems,” IEEE Int. Things J., vol. 9, no. 3, pp. 1951–1961, 2022.

    Article  Google Scholar 

  121. J. Jeon, R. D. Ford, V. V. Ratnam, J. Cho, and J. Zhang, “Coordinated dynamic spectrum sharing for 5G and beyond cellular networks,” IEEE Access, vol. 7, pp. 111 592–111 604, 2019.

    Google Scholar 

  122. A. Narayanan, A. S. D. Sena, D. Gutierrez-Rojas, D. C. Melgarejo, H. M. Hussain, M. Ullah, S. Bayhan, and P. H. J. Nardelli, “Key advances in pervasive edge computing for industrial internet of things in 5G and beyond,” IEEE Access, vol. 8, pp. 206 734–206 754, 2020.

    Google Scholar 

  123. Nokia, “Nokia AVA – AI energy efficiency for telco,” 2022. [Online]. Available: https://www.nokia.com/networks/services/NokiaAVA/energyefficiency, [Accessed: May 29, 2022.].

  124. H. Fourati, R. Maaloul, L. Fourati, and M. Jmaiel, “An efficient energy-saving scheme using genetic algorithm for 5G heterogeneous networks,” IEEE Systems Journal, pp. 1–10, 2022.

    Google Scholar 

  125. Q. Zeng, Y. Du, K. Huang, and K. K. Leung, “Energy-efficient resource management for federated edge learning with CPU-GPU heterogeneous computing,” IEEE Trans. Wireless Commun., vol. 20, no. 12, pp. 7947–7962, 2021.

    Article  Google Scholar 

  126. H. Chergui, L. Blanco, L. A. Garrido, K. Ramantas, S. Kuklinski, A. Ksentini, and C. Verikoukis, “Zero-touch AI-driven distributed management for energy-efficient 6G massive network slicing,” IEEE Network, vol. 35, no. 6, pp. 43–49, 2021.

    Article  Google Scholar 

  127. M. Miozzo, Z. Ali, L. Giupponi, and P. Dini, “Distributed and multi-task learning at the edge for energy efficient radio access networks,” IEEE Access, vol. 9, pp. 12 491–12 505, 2021.

    Google Scholar 

  128. A. Zappone, M. Di Renzo, and M. Debbah, “Wireless networks design in the era of deep learning: Model-based, AI-based, or both?” IEEE Trans. Commun., vol. 67, no. 10, pp. 7331–7376, 2019.

    Article  Google Scholar 

  129. A. S. de Sena, D. B. da Costa, Z. Ding, and P. H. J. Nardelli, “Massive MIMO-NOMA networks with multipolarized antennas,” IEEE Trans. Wireless Commun., vol. 18, no. 12, pp. 5630–5642, Dec. 2019.

    Article  Google Scholar 

  130. A. S. de Sena, F. R. M. Lima, D. B. da Costa, Z. Ding, P. H. J. Nardelli, U. S. Dias, and C. B. Papadias, “Massive MIMO-NOMA networks with imperfect SIC: Design and fairness enhancement,” IEEE Trans. Wireless Commun., vol. 19, no. 9, pp. 6100–6115, 2020.

    Article  Google Scholar 

  131. Y. Karacora, C. Chaccour, A. Sezgin, and W. Saad, “Reliable beam tracking with dynamic beamwidth adaptation in terahertz (THz) communications,” 2022. [Online]. Available: https://arxiv.org/abs/2201.06541

  132. V.-L. Nguyen, P.-C. Lin, B.-C. Cheng, R.-H. Hwang, and Y.-D. Lin, “Security and privacy for 6G: A survey on prospective technologies and challenges,” IEEE Commun. Surv. Tutorials, vol. 23, no. 4, pp. 2384–2428, 2021.

    Article  Google Scholar 

  133. J. Chen, Y.-C. Liang, Y. Pei, and H. Guo, “Intelligent reflecting surface: A programmable wireless environment for physical layer security,” IEEE Access, vol. 7, pp. 82 599–82 612, 2019.

    Google Scholar 

  134. H. Yang, Z. Xiong, J. Zhao, D. Niyato, Q. Wu, H. V. Poor, and M. Tornatore, “Intelligent reflecting surface assisted anti-jamming communications: A fast reinforcement learning approach,” IEEE Trans. Wireless Commun., vol. 20, no. 3, pp. 1963–1974, 2021.

    Article  Google Scholar 

  135. X. Guan, Q. Wu, and R. Zhang, “Intelligent reflecting surface assisted secrecy communication: Is artificial noise helpful or not?” IEEE Wireless Commun. Lett., vol. 9, no. 6, pp. 778–782, 2020.

    Article  Google Scholar 

  136. S. Hong, C. Pan, H. Ren, K. Wang, and A. Nallanathan, “Artificial-noise-aided secure MIMO wireless communications via intelligent reflecting surface,” IEEE Trans. Commun., vol. 68, no. 12, pp. 7851–7866, 2020.

    Article  Google Scholar 

  137. Z. Ji, P. L. Yeoh, D. Zhang, G. Chen, Y. Zhang, Z. He, H. Yin, and Y. li, “Secret key generation for intelligent reflecting surface assisted wireless communication networks,” IEEE Transactions on Vehicular Technology, vol. 70, no. 1, 2021.

    Google Scholar 

  138. A. S. de Sena, P. H. J. Nardelli, D. B. da Costa, P. Popovski, C. B. Papadias, and M. Debbah, “Dual-polarized RSMA for massive MIMO systems,” IEEE Wireless Commun. Lett., pp. 1–1, 2022.

    Google Scholar 

  139. H. Fu, S. Feng, W. Tang, and D. W. K. Ng, “Robust secure beamforming design for two-user downlink MISO rate-splitting systems,” IEEE Trans. Wireless Commun., vol. 19, no. 12, pp. 8351–8365, 2020.

    Article  Google Scholar 

  140. H. Xia, Y. Mao, X. Zhou, B. Clerckx, S. Han, and C. Li, “Secure beamforming design for rate-splitting multiple access in multi-antenna broadcast channel with confidential messages,” 2022. [Online]. Available: https://arxiv.org/abs/2202.07328

  141. C. Wang and A. Rahman, “Quantum-enabled 6G wireless networks: opportunities and challenges,” IEEE Wireless Commun., vol. 29, no. 1, pp. 58–69, 2022.

    Article  Google Scholar 

  142. F. Xu, M. Curty, B. Qi, and H.-K. Lo, “Measurement-device-independent quantum cryptography,” IEEE J. Sel. Top. Quantum Electron., vol. 21, no. 3, pp. 148–158, 2015.

    Article  Google Scholar 

  143. A. S. Cacciapuoti, M. Caleffi, R. Van Meter, and L. Hanzo, “When entanglement meets classical communications: Quantum teleportation for the quantum internet,” IEEE Trans. Commun., vol. 68, no. 6, pp. 3808–3833, 2020.

    Article  Google Scholar 

  144. M. Sasaki, “Quantum key distribution and its applications,” IEEE Secur. Privacy, vol. 16, no. 5, pp. 42–48, 2018.

    Article  Google Scholar 

  145. Azim, A.W., Monsalve, J.L.G. and Chafii, M., 2021. Enhanced PSK-LoRa. IEEE Wireless Communications Letters, 11(3), pp.612-616.

    Article  Google Scholar 

  146. A. W. Azim, A. Bazzi, R. Shubair and M. Chafii, “Dual-Mode Chirp Spread Spectrum Modulation,” in IEEE Wireless Communications Letters, vol. 11, no. 9, pp. 1995-1999, Sept. 2022, https://doi.org/10.1109/LWC.2022.3190564.

    Article  Google Scholar 

  147. Gizzini AK, Chafii M, Nimr A, Shubair RM, Fettweis G. CNN aided weighted interpolation for channel estimation in vehicular communications. IEEE Transactions on Vehicular Technology. 2021 Oct 14;70(12):12796-811.

    Article  Google Scholar 

  148. A. K. Gizzini and M. Chafii, “A Survey on Deep Learning Based Channel Estimation in Doubly Dispersive Environments,” in IEEE Access, vol. 10, pp. 70595-70619, 2022, https://doi.org/10.1109/ACCESS.2022.3188111.

    Article  Google Scholar 

  149. D. Chandra, M. Caleffi, and A. S. Cacciapuoti, “The entanglement-assisted communication capacity over quantum trajectories,” IEEE Trans. Wireless Commun., vol. 21, no. 6, pp. 3632–3647, 2022.

    Article  Google Scholar 

  150. S. J. Nawaz, S. K. Sharma, S. Wyne, M. N. Patwary, and M. Asaduzzaman, “Quantum machine learning for 6G communication networks: State-of-the-art and vision for the future,” IEEE Access, vol. 7, pp. 46 317–46 350, 2019.

    Google Scholar 

  151. Z. Bao, Q. Wang, W. Shi, L. Wang, H. Lei, and B. Chen, “When blockchain meets SGX: An overview, challenges, and open issues,” IEEE Access, vol. 8, pp. 170 404–170 420, 2020.

    Google Scholar 

  152. H. Li, P. Gao, Y. Zhan, and M. Tan, “Blockchain technology empowers telecom network operation,” China Commun., vol. 19, no. 1, pp. 274–283, 2022.

    Article  Google Scholar 

  153. W. Zheng, Z. Zheng, X. Chen, K. Dai, P. Li, and R. Chen, “NutBaaS: A blockchain-as-a-service platform,” IEEE Access, vol. 7, pp. 134 422–134 433, 2019.

    Google Scholar 

  154. R. Khan, P. Kumar, D. N. K. Jayakody, and M. Liyanage, “A survey on security and privacy of 5G technologies: Potential solutions, recent advancements, and future directions,” IEEE Commun. Surv. Tutorials, vol. 22, no. 1, pp. 196–248, 2020.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Benevides da Costa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

da Costa, D.B., Zhao, Q., Chafii, M., Bader, F., Debbah, M. (2024). 6G: Vision, Applications, and Challenges. In: Lin, X., Zhang, J., Liu, Y., Kim, J. (eds) Fundamentals of 6G Communications and Networking. Signals and Communication Technology. Springer, Cham. https://doi.org/10.1007/978-3-031-37920-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-37920-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-37919-2

  • Online ISBN: 978-3-031-37920-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics