Skip to main content

Abstract

Wireless sensors have gained popularity in smart grids scenario, and their increasing number, together with efficient data processing and decision-making, can optimize the entire operation of electricity generation and distribution. In order to meet the sensor energy demand, low-power energy harvesting systems have become a promising alternative since their principle is converting energy available in the surrounding environment into useful electrical energy to supply low-power devices. The advantage of this technique is the abundance and availability of ambient energy sources that, despite having low energy density, are sufficient to individually power each intended sensor continuously, presenting similar versatility to batteries but without constant replacement. In this context, this chapter intends to survey the leading energy harvesting techniques for wireless power sensors in a smart grid scenario, focusing on mechanical, Radio Frequency (RF), and solar sources, presenting their basic topologies, working principles, capabilities, and main characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Soyata T, Copeland L, Heinzelman W (2016) RF Energy harvesting for embedded systems: a survey of tradeoffs and methodology. IEEE Circuits Syst Mag 16(1):22–57. (Firstquarter 2016). issn:1531 636X

    Google Scholar 

  2. Mathews I et al (2016) Performance of III-V solar cells as indoor light energy harvesters. IEEE J Photovolt 6(1):230–235. https://doi.org/10.1109/JPHOTOV.2015.2487825

    Article  Google Scholar 

  3. Feng Y et al (2017) Hybrid energy harvesting for condition monitoring sensors in power grids. Energy 118:435–445

    Article  Google Scholar 

  4. Suzuki Y (2011) Recent progress in MEMS electret generator for energy harvesting. IEEJ Trans Electr Electron Eng 6:101–111

    Article  Google Scholar 

  5. Tian J, Chen X, Wang ZL (2020) Environmental energy harvesting based on triboelectric nanogenerators. Nanotechnology 31(24):242001

    Article  Google Scholar 

  6. Wang H, Shi G, Han C (2021) A free-standing electromagnetic energy harvester for condition monitoring in smart grid. In: Wireless Power Transfer 2021

    Google Scholar 

  7. Pavana H, Deshpande R (2020) Energy harvesting techniques for monitoring devices in smart grid application. In: 2020 Third international conference on advances in electronics, computers and communications (ICAECC), pp 1–6

    Google Scholar 

  8. Wang Z et al (2021) A self-sustained current sensor for smart grid application. IEEE Trans Ind Electron 68(12):12810–12820

    Article  Google Scholar 

  9. Zhou W et al (2021) Research on multi-source environmental micro energy harvesting and utilization. In: 2021 6th Asia conference on power and electrical engineering (ACPEE), pp 1072–1076

    Google Scholar 

  10. Luo Q, Wang T, He Y (2017) Battery-free and energy-effective RFID sensor tag for health monitoring in smart grid. In: 2017 Asia modelling symposium (AMS), pp 179–183

    Google Scholar 

  11. Yuan Z et al (2021) Magnetic energy harvesting of transmission lines by the swinging triboelectric nanogenerator. Mater Today Energy 22:100848

    Article  Google Scholar 

  12. Faheem M et al (2019) Ambient energy harvesting for low powered wireless sensor network based smart grid applications. In: 2019 7th International Istanbul smart grids and cities congress and fair (ICSG), pp 26–30

    Google Scholar 

  13. Abasian A et al (2018) Design optimization of an energy harvesting platform for self-powered wireless devices in monitoring of AC power lines. IEEE Trans Power Electron 33(12):10308–10316

    Article  Google Scholar 

  14. Abasian A et al (2018) Vacuum-packaged piezoelectric energy harvester for powering smart grid monitoring devices. IEEE Trans Ind Electron 66(6):4447–4456

    Article  Google Scholar 

  15. Yildiz HU, Gungor VC, Tavli B (2018) A hybrid energy harvesting framework for energy efficiency in wireless sensor networks based smart grid applications. In: 2018 17th annual Mediterranean Ad Hoc networking workshop (Med-Hoc-Net), pp 1–6

    Google Scholar 

  16. Sun W et al (2021) Research on life extension method of transmission line intelligent sensing system based on environmental energy harvesting. J Sens

    Google Scholar 

  17. Pehlivanoglu EB et al (2018) Harvesting-throughput trade-off for wireless powered smart grid IoT applications: an experimental study. In: 2018 IEEE international conference on communications (ICC). IEEE, pp 1–6

    Google Scholar 

  18. Parejo A et al (2019) Monitoring and fault location sensor network for underground distribution lines. Sensors 19(3):576

    Article  Google Scholar 

  19. Beeby SP et al (2007) A micro electromagnetic generator for vibration energy harvesting. J Micromech Microeng 17(7):1257. (June 2007). https://doi.org/10.1088/0960-1317/17/7/007

  20. Liao Y, Liang J (2018) Maximum power, optimal load, and impedance analysis of piezoelectric vibration energy harvesters. Smart Mater Struct 27(7):075053

    Article  Google Scholar 

  21. Jia J et al (2022) Equivalent circuit modeling and analysis of aerodynamic vortex-induced piezoelectric energy harvesting. Smart Mater Struct 31(3):035009

    Article  MathSciNet  Google Scholar 

  22. Tilmans HAC (1996) Equivalent circuit representation of electromechanical transducers: I. Lumped-parameter systems. J Micromech Microeng 6(1):157

    Article  Google Scholar 

  23. Elvin NG, Elvin AA (2009) A general equivalent circuit model for piezoelectric generators. J Intell Mater Syst Struct 20(1):3–9

    Google Scholar 

  24. Hertz H (1887) Ueber einen Einfluss des ultravioletten Lichtes auf die electrische Entladung. Annalen der Physik 3(1):310–317. (Jan 1887). issn: 2156-3381

    Google Scholar 

  25. Singh AK, Graham S (2019) Ultrabarrier films for packaging flexible electronics: examining the role of thin-film technology. IEEE Nanotechnol Mag 13(1):30–36. https://doi.org/10.1109/MNANO.2018.2869179

    Article  Google Scholar 

  26. Cambero EVV et al (2022) A 2.4 GHz coplanar solar cell patch antenna with a semi-analytical evaluation of temperature effects. J Microwav Optoelectron Electromagn Appl 21(1):194–206

    Google Scholar 

  27. Jaimes AF, de Sousa FR (2017) Simple modelling of photovoltaic solar cells for indoor harvesting applications. Solar Energy 157:792–802. issn: 0038-092X

    Google Scholar 

  28. Cambero EVV (2020) Analysis of a coplanar patch antenna array integrated with photovoltaic cells for hybrid energy harvesting. PhD thesis. Universidade Federal do ABC, Energy Graduate Program, Santo André, São Paulo, 2020

    Google Scholar 

  29. Ray B, Alam MA (2013) Organic solar cells by charged interface. IEEE J Photovolt 3(1):310–317. (Jan 2013). https://doi.org/10.1109/JPHOTOV.2012.2216508

  30. Agha HS, Koreshi Z-U, Khan MB (2017) Artificial neural network based maximum power point tracking for solar photovoltaics. In: 2017 international conference on information and communication technologies (ICICT), pp 150–155. https://doi.org/10.1109/ICICT.2017.8320180

  31. Ponce-Alcántara S et al (2014) A statistical analysis of the temperature coefficients of industrial silicon solar cells. Energy Procedia 55. issn: 1876-6102. https://doi.org/10.1016/j.egypro.2014.08.029. https://www.sciencedirect.com/science/article/pii/ S1876610214012533. (Proceedings of the 4th International Conference on Crystalline Silicon Photovoltaics (SiliconPV 2014), pp 578–588)

  32. Brown WC (1984) The history of power transmission by radio waves. IEEE Trans Microw Theory Tech 32(9):1230–1242

    Article  Google Scholar 

  33. Brown WC (1980) The history of the development of the rectenna. In: NASA. Johnson space center solar power satellite microwave transmission and reception (1980)

    Google Scholar 

  34. Paz HP et al (2019) A survey on low power RF rectifiers efficiency for low cost energy harvesting applications. AEU-Int J Electron Commun 112:152963

    Article  Google Scholar 

  35. ur Rehman M, Ahmad W, Khan WT (2017) Highly efficient dual band 2.45/5.85 GHz rectifier for RF energy harvesting applications in ISM band. In: 2017 IEEE Asia Pacific microwave conference (APMC), pp 150–153. (Nov 2017)

    Google Scholar 

  36. Nimo A et al (2015) Analysis of passive RF-DC power rectification and harvesting wireless rf energy for micro-watt sensors. AIMS J 3:184–200. (Apr 2015)

    Google Scholar 

  37. Shieh S, Kamarei M (2018) Transient input impedance modeling of rectifiers for RF energy harvesting applications. IEEE Trans Circuits Syst II: Express Briefs 65(3):311–315. (Mar 2018)

    Google Scholar 

  38. Gu X et al (2018) Integrated cooperative ambient power harvester collecting ubiquitous radio frequency and kinetic energy. IEEE Trans Microwave Theory Techn 66(9):4178–4190. (Sept 2018)

    Google Scholar 

  39. Ali E et al (2018) Enhanced Dickson voltage multiplier rectenna by developing analytical model for radio frequency harvesting applications. Int J RF Microw Comput Aided Eng 29:e21657. (Dec 2018)

    Google Scholar 

  40. Nikoletseas S, Yang Y, Georgiadis A (2016) Wireless power transfer algorithms, technologies and applications in Ad Hoc communication networks, 1st. Springer Publishing Company, Incorporated. isbn: 331946809X

    Google Scholar 

  41. Trevisoli R et al (2022) Modeling Schottky Diode rectifiers considering the reverse conduction for RF wireless power transfer. IEEE Trans Circuits Syst II Express Briefs 69(3):1732–1736. https://doi.org/10.1109/TCSII.2021.3102576

    Article  Google Scholar 

  42. Gu X et al (2020) Optimum temperatures for enhanced power conversion efficiency (PCE) of zero-bias diode-based rectifiers. IEEE Trans Microwave Theory Tech 68(9):4040–4053. https://doi.org/10.1109/TMTT.2020.2992024

    Article  Google Scholar 

  43. Massabrio G, Antognetti P (1998) Semiconductor device modeling with spice, 1st edn. McGraw-Hill, Inc., USA. isbn: 0071349553

    Google Scholar 

  44. Rockett A (2007) The materials science of semiconductors, 1st edn. Springer Publishing Company, Incorporated. isbn: 0387256539

    Google Scholar 

  45. Sze SM, Ng KK (2006) Physics of semiconductor devices. Wiley. isbn: 9780470068304. https://books.google.com.br/books?id=o4unkmHBHb8C

  46. Keyrouz S, Visser HJ, Tijhuis AG (2012) Rectifier analysis for Radio Frequency energy harvesting and Power Transport. In: 2012 42nd European microwave conference, pp 428–431. https://doi.org/10.23919/EuMC.2012.6459081

  47. Ou J-H et al (2018) Novel time-domain schottky diode modeling for microwave rectifier designs. IEEE Trans Circuits Syst I Regul Papers 65(4):1234–1244. https://doi.org/10.1109/TCSI.2017.2739245

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by Coordenaáo de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) under grant 001, Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) under grants 2019/25866-7, 2022/10876-0, Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) under grant 404068/2020-0, Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG) under grant APQ-03609-17 and Instituto Nacional de Energia Elétrica (INERGE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vinícius S. Silva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Valdés Cambero, E.V., Silva, V.S., Paz, H.P., Trevisoli, R., Capovilla, C.E., Casella, I.R.S. (2024). Energy Harvesting Towards Power Autonomous Sensors in Smart Grids. In: Sguarezi Filho, A.J., Jacomini, R.V., Capovilla, C.E., Casella, I.R.S. (eds) Smart Grids—Renewable Energy, Power Electronics, Signal Processing and Communication Systems Applications. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-031-37909-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-37909-3_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-37908-6

  • Online ISBN: 978-3-031-37909-3

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics