Skip to main content

Part of the book series: UNITEXT ((UNITEXTMAT,volume 155))

  • 138 Accesses

Abstract

The study of the stress-deformed state of elastic bodies began to develop actively in the nineteenth century and has not lost its relevance to the present day. This is due to the wide range of applications in various engineering applications. The classical linear theory of elasticity is the most important basis for most strength calculations in engineering. During operation, building and other structures are exposed to mechanical, temperature, and other types of influence. Therefore, when designing, it is necessary to calculate the strength of such structures. Product strength characteristics can be obtained based on the analysis of the stress-strain state of their elastic models. One such model is a semi-infinite strip. Therefore, the development of analytical and numerical methods for studying its stress-strain state is an urgent problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abbas, I.A.: Analytical-numerical solution of thermoelastic problem in a semi-infinite medium under Green and Naghdi Theory. J. Thermoelast. 01(02), 19–23 (2013)

    Google Scholar 

  2. Abou-Dina, M.S., Ghaleb, A.F.: On the boundary integral formulation of the plane theory of thermoelasticity (analytical aspects). J. Therm. Stresses. 25, 1–29 (2002)

    Article  Google Scholar 

  3. Akbarov, S.D., Yahnioglu, N., Turan, A.: Influence of initial stresses on stress intensity factors at crack tips in a composite strip. Mech. Compos. Mater. 40(4) (2004)

    Google Scholar 

  4. Aglovyan, L.A., Gevorkyan, R.S.: About some mixed problem of theory of elasticity for a semi-strip (in Russian). Proc. Acad. Sci. Armenian SSR, Mech. 23(3), 3–13 (1970)

    Google Scholar 

  5. Aleksandrov, V.M., Mkhitaryan, S.M.: Contact Problems for the Bodies with Thin Coatings and Interlayers (in Russian). Nauka, M. (1983)

    Google Scholar 

  6. Alexandrov, V.M., Pozharskii, D.A.: To the problem of a crack on the elastic strip-half-plane interface. Mech. Solids. 36(1), 70–76 (2001)

    Google Scholar 

  7. Antipov, Y.A.: Singular integral equations with two fixed singularities and applications to fractured composites. Quart. J. Mech. Appl. Math. 68(4) (2015)

    Google Scholar 

  8. Antipov, Y.A.: Singular integral equations with two fixed singularities and the Helmholtz equation in the exterior of a slice of a cone. (2014)

    Google Scholar 

  9. Antipov, Y.A., Bardzokas, D., Exadactylos, G.E.: Interface edge crack in a bimaterial elastic half-plane. Int. J. Fract. 88, 281–304 (1998)

    Article  Google Scholar 

  10. Antipov, Y.A., Schiavone, P.: Integro-differential equation of a finite crack in a strip with surface effects. Quart. J. Mech. Appl. Math. 64, 87–106 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Antonenko, N.N.: The problem on the longitudinal crack with filler in strip (in Russian). News Saratov Univ. Ser. Math. Mech. Inf. 15(3) (2015)

    Google Scholar 

  12. Ballarini, R., Luo, H.A.: Green’s functions for dislocations in bonded strips and related crack problems. Int. J. Fract. 50, 239–262 (1991)

    Article  Google Scholar 

  13. Benthem, J.P.: A Laplace transform method for the solution of semi-infinite and finite strip problems in stress analysis. Quart. J. Mech. Appl. Math. 16(4), 413–429 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  14. Bierman, G.I.: A particular class of singular integral equations. J. Appl. Math. 20(1), 99–109 (1971)

    MathSciNet  MATH  Google Scholar 

  15. Bogy, D.B.: Solution of the plane end problem for a semi-infinite elastic strip. J. Appl. Math. Phys. 26, 749–769 (1975)

    MathSciNet  MATH  Google Scholar 

  16. Bogy, D.B.: The plane solution for joined dissimilar elastic semistrips under tension. J. Appl. Mech. 42(1), 93–98 (1974)

    Article  MATH  Google Scholar 

  17. Borisova, E.V.: Concentration of Stress at the Tip of an Internal Transverse Crack in a Composite Elastic Body (in Russian) . Thesis, Rostov-on-Don (2015)

    Google Scholar 

  18. Bowie, O.L., Freese, C.E.: A Note on the Bending of a Cracked Strip Including Crack Surface Interference, pp. 457–459. Army Materials and Mechanics Research Center

    Google Scholar 

  19. Bueekner, H.F.: On a class of singular integral equations. J. Math. Anal. Appl. 14, 392–426 (1966)

    Article  MathSciNet  Google Scholar 

  20. Capobianco, M.R., Criscuolo, G., Junghanns, P.: On the numerical solution of a hypersingular integral equation with fixed singularities. Oper. Theory Adv. Applications. 187, 95–116 (2005)

    MathSciNet  MATH  Google Scholar 

  21. Chai, H.: A note on crack trajectory in an elastic strip bounded by rigid bustrates. Int. J. Fract. 32, 211–213 (1987)

    Article  Google Scholar 

  22. Chell, G.: The stress intensity factors for centre and edge cracked sheels subject to an arbitrary loading. Eng. Fract. Mech. 7(1), 137–152 (1975)

    Article  Google Scholar 

  23. Chell, G.C.: The stress intensity factors and crack profiles for centre and edge cracks in plates subject to arbitrary stresses. Int. J. Fract. 12(1), 33–46 (1976)

    Article  Google Scholar 

  24. Chen, Y.-z.: Stress analysis for an infinite strip weakened by periodic cracks. Appl. Math. Mech. 25(11) (2004)

    Google Scholar 

  25. Chiang, C.R.: A local variational principle and its application to an infinite strip containing a central transverse crack. Int. J. Fract. 57, R33–R36 (1992)

    Article  Google Scholar 

  26. Civelek, M.B., Erdogan, F.: Crack problems for a rectangular plate and an infinite strip. Int. J. Fract. 19, 139–159 (1982)

    Article  Google Scholar 

  27. Crowdy, D.G., Fokas, A.S.: Explicit integral solutions for the plane elastostatic semi-strip. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 460(2045), 1285–1309 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  28. Davidson, S.: The linear steady thermoelastic problem for a strip with a collinear array of Griffith cracks parallel to its edges. J. Eng. Math. 27, 89–98 (1993)

    Article  MATH  Google Scholar 

  29. Denisova, T.V., Protsenko, V.S., Buzko Ya.P.: The problem of stationary heat conduction for a half-strip with a circular hole (in Russian). Open Inf. Comput. Integr. Technol. 42, 159–163 (2009)

    Google Scholar 

  30. Denisova, T.V., Protsenko, V.S.: An elastic half-strip clamped at the end with a circular hole or a rigid circular inclusion (in Russian). Open Inf. Comput. Integr. Technol. 46 (2010)

    Google Scholar 

  31. Dhaliwal, R.S., Singh, B.M.: Two coplanar Griffith cracks in an infinitely long elastic strip. J. Elast. 11(3) (1981)

    Google Scholar 

  32. Dorosh, N.A., Kit, G.S.: Equilibrium of a strip containing a rectilinear transverse crack under the influence of heat sources. Prikladnaya Mekhanika. 10(11), 93–98 (1974)

    Google Scholar 

  33. Duduchava, R.V.: Convolution Integral Equations with Discontinuous Presymbols, Singular Integral Equations with Fixed Singularities, and Their Applications to Problems in Mechanics (in Russian). Metsniereba, Tbilisi (1979) 133 p

    MATH  Google Scholar 

  34. Duduchava, R., Krupnik, N., Shargorodsky, E.: An algebra of integral operators with fixed singularities in kernels. Integr. Equ. Oper. Theory. 33(4), 406–425 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  35. Dyskin, A.V., Germanovich, L.N., Ustinov, K.B.: Asymptotic analysis of crack interaction with free boundary. Int. J. Solids Struct. 37(6), 857–886 (2000)

    Article  MATH  Google Scholar 

  36. Elishakoff, I., Ren, Y.J., Shinozuka, M.: Some exact solutions for the bending of beams with spatially stochastic stiffness. Int. J. Solids Struct. 32(16), 2315–2327 (1995)

    Article  MATH  Google Scholar 

  37. Erdogan, F., Arin, K.: A half plane and a strip an arbitrarily located crack. Int. J. Fract. 11(2), 191–204 (1975)

    Article  Google Scholar 

  38. Erdogan, F., Terada, H.: Wedge loading of a semi-infinite strip with an edge crack. Int. J. Fract. 14(4) (1978)

    Google Scholar 

  39. Fil’shtinskii, L.A., Bondar, A.V.: Problem of coupled thermoelasticity for a half-layer with a tunnel cavity: an antisymmetric case. Int. Appl. Mech. 44(10) (2008)

    Google Scholar 

  40. Gabbasov, N.S.: Methods for solving an integral equation of the third kind with fixed singularities in the kernel. Differentsial’nye Uravneniya. 45(9), 1341–1348 (2009)

    MathSciNet  MATH  Google Scholar 

  41. Gabbasov, N.S.: New versions of the collocation method for integral equations of the third kind with singularities in the kernel. Differentsial’nye Uravneniya. 47(9), 1344–1351 (2011)

    MathSciNet  Google Scholar 

  42. Gabrusev, G.: The problem of thermoelasticity for a transversally isotropic sphere with spike lines dividing the boundary conditions on its surface (in Ukrainian). Bull. TNTU. 73(1), 57–67 (2014)

    Google Scholar 

  43. Gavrilkyuk, I.P., Makarov, L.V.: A difference method for the solution of a class of generalized boundary-value problems in a half-strip. Vichislitel’naya i Prikladnaya Matematica. 69, 28–37 (1989)

    Google Scholar 

  44. Gecit, M.R.: A cracked elastic strip bonded to a rigid support. Int. J. Fract. 14(6) (1978)

    Google Scholar 

  45. Gecit, M.R., Turgut, A.: Extension of a finite strip bonded to a rigid support. Comput. Mech. 3, 398–410 (1988)

    Article  Google Scholar 

  46. Gogoleva, O.S.: Examples of solving the first main boundary value problem of elasticity theory in a half-strip (symmetric problem) (in Russian). Bull. OGU. 9(145), 138–142 (2012)

    Google Scholar 

  47. Goldstein, R.V., Ryskov, I.N., Salganik, R.L.: Central transverse crack in an infinite strip. Int. J. Fract. Mech. 6, 104–105 (1970)

    Article  Google Scholar 

  48. Gomilko, A.M.: A Dirichlet problem for the biharmonic equation in a semi-infinite strip. J. Eng. Math. 46, 253–268 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  49. Gomilko, A.M., Grinchenko, V.T., Meleshko, V.V.: Method of homogeneous solutions and superposition in the mixed problem for an elastic half-strip. Soviet Appl. Mech. 26(2), 193–202 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  50. Gregory, R.D.: The traction boundary value problem for the elastostatic semi-infinite strip, existence of solution, and completeness of the Papkovitch-Fadle eigenfunction. J. Elast. 10, 295–327 (1980)

    Article  MATH  Google Scholar 

  51. Gregory, R.D., Wan, F.Y.M.: Decaying states of plane strain in a semi-infinite strip and boundary conditions for plate theory. J. Elast. 14, 27–64 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  52. Gussein-Zade, M.I.: On conditions for the existence of damped solutions of a plane problem of elasticity theory for a half-strip (in Russian). ПММ. (1965) Т. 29, No. 2

    Google Scholar 

  53. Guz, A.N., Guz, I.A., Men’shikov, A.V., Men’shikov, V.A.: Stress-intensity factors for materials with interface cracks under harmonic loading. Int. Appl. Mech. 46, 1093 (2011). https://doi.org/10.1007/s10778-011-0401-1

    Article  MathSciNet  MATH  Google Scholar 

  54. Horvay, G., Born, J.: Some mixed boundary-value problems of the semi-infinite strip. J. Appl. Mech. 24(2), 261–268 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  55. Hvozdara, M., Rosa, K.: Stress and displacements due to a stationary point source of heat in an elastic halfspace. Studia geoph. etgeod. 24 (1980)

    Google Scholar 

  56. Isida, M.: Analysis of stress intensity factors for the tension of a centrally cracked strip with stiffened edges. Eng. Fract. Mech. 5(3), 647–665 (1973)

    Article  Google Scholar 

  57. Itou, H., Tani, A.: A boundary value problem for an infinite elastic strip with a semi-infinite crack. J. Elast. 66, 193–206 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  58. Jamashida: Investigation of stresses in a semi-infinite strip under the action of forces applied to its end. Trans. Japan. Soc. Mech. Engrs. 20(95), 466 (1954)

    Article  Google Scholar 

  59. Johnson, M.W., Little, R.W.: The semi-infinite elastic strip. Q. Appl. Math. 22(4), 335–344 (1965)

    Article  MathSciNet  Google Scholar 

  60. Junghanns, P., Rathsfeld, A.: On polynomial collocation for Cauchy singular integral equations with fixed singularities. Integr. Equ. Oper. Theory. 43(2), 155–176 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  61. Kal’muk, L.I., Stashchuk, M.G., Pokhmurs’kii, V.I.: Stress-intensity coefficients around the vertices of cracks and rigid inclusions in strips with clamped or free boundaries. Fiziko-Khimicheskaya Mekhanika Materialov. 26(4), 65–75 (1990)

    Google Scholar 

  62. Kaplunov, J.D., Kossovitch, L.Y., Nolde, E.V.: Dynamics of Thin Walled Elastic Bodies. Academic Press, London (1997) 232 p

    Google Scholar 

  63. Kit, G.S., Krivtsun, M.G.: Plane Problems of Thermoelasticity for Bodies with Cracks (in Russian). Naukova dumka, Kiev (1983) 278 p

    MATH  Google Scholar 

  64. Koiter, W., Alblas, J.: On the bending of cantilever rectangular Plates. Proc. Koninke Nederl. Acad. wet. B. 57(2) (1954)

    Google Scholar 

  65. Kolchin, G.B., Plyatt, S.N., Sheinker, N.Y.: Some Problems of Thermoelasticity for Rectangular Domains (in Russian). Shtiintsa (1980) 106 p

    Google Scholar 

  66. Kolyano, Y.M., Zatvarskaya, L.M.: Method of continuation of functions in the problem of thermoelasticity for a half-strip (in Russian). News Univ. Math. 8, 84–86 (1987)

    MATH  Google Scholar 

  67. Kovalenko, M.D., Menshova, I.V., Kerzhaev, A.P.: Discontinuity of movements in the strip. Solution in trigonometric series (in Russian). Bull. Chuvash State Pedagogical Univ. I. Ya. Yakovleva. Ser. Limit State Mech. 2(24), 50–71 (2015)

    Google Scholar 

  68. Krasnoshchekov, A.A., Sobol, B.V.: Equilibrium of an internal transverse crack in a semiinfinite elastic body with thin coating. Mech. Solids. 51(1), 114–126 (2016). https://doi.org/10.3103/S0025654416010118

    Article  Google Scholar 

  69. Krein, M.G.: Integral equations on the half-line with a kernel depending on the difference of the arguments (in Russian). UMN. 13(5), 3–120 (1958)

    MATH  Google Scholar 

  70. Krenk, S.: On the elastic strip with an internal crack. Int. J. Solids Struct. 11(6), 693–708 (1975)

    Article  MATH  Google Scholar 

  71. Krenk, S., Bakioglu, M.: Transverse cracks in a strip with reinforced surfaces. Int. J. Fract. 11(3), 441–447 (1975)

    Article  Google Scholar 

  72. Kryvyi, O.F.: Mutual influence of an interface tunnel crack and an interface tunnel inclusion in a piecewise homogeneous anisotropic space. J. Math. Sci. 208(4), 409–416 (2015)

    Article  Google Scholar 

  73. Kushnir, R.M., Nykolyshyn, M.M., Zhydyk, U.V., et al.: Modeling of thermoelastic processes in heterogeneous anisotropic shells with initial deformations. J. Math. Sci. 178, 512–530 (2011). https://doi.org/10.1007/s10958-011-0566-5

    Article  MathSciNet  Google Scholar 

  74. Lamzyuk, V.D., Mossakovshii, V.I., Sotnikova, S.D.: On stresses in a strip with a crack. J. Math. Sci. 70(5) (1994)

    Google Scholar 

  75. Lamzyuk, V.D., Sotnikova, S.D.: A plane problem in elasticity theory for a half-strip with given normal displacement at the base. J. Math. Sci. 90(6) (1998)

    Google Scholar 

  76. Lee, D.-S.: The problem of internal cracks in an infinite strip having a circular hole. Acta Mech. 169, 101–110 (2004)

    Article  MATH  Google Scholar 

  77. Li, Y.-d., Lee, K.Y.: Fracture analysis of a weak-discontinuous interface in a symmetrical functionally gradient composite strip loaded by anti-plane impact. Arch. Appl. Mech. 78, 855–866 (2008). https://doi.org/10.1007/s00419-007-0194-1

    Article  MATH  Google Scholar 

  78. Li, X., Guo, S.H.: Effects of nonhomogeneity on dynamic stress intensity factors for an antiplane interface crack in a functionally graded material bonded to an elastic semi-strip. Comput. Mater. Sci. 38(2), 432–441 (2006)

    Article  Google Scholar 

  79. Ling, C.B., Cheng, F.H.: Stresses in a semi-infinite strip. Int. J. Eng. Sci. 5(2), 155 (1967)

    Article  MATH  Google Scholar 

  80. Liu, X.-H., Erdogan, F.: An elastic strip with multiple cracks and applications to tapered specimens. Int. J. Fract. 29, 59–72 (1985)

    Article  Google Scholar 

  81. Loboda, V.V., Sheveleva, A.E.: Steady thermal contact of a half strip and a strip. Inzhenerno-Fizicheskii Zhurnal. 53(2), 302–307 (1987)

    Google Scholar 

  82. Ma, L., Wu, L.-Z., Zhou, Z.-G., Zeng, T.: Crack propagation in a functionally graded strip under the plane loading. Int. J. Fract. 126, 39–55 (2004)

    Article  MATH  Google Scholar 

  83. Martynyuk, P.A., Polyak, E.B.: Equilibrium of an isolated crack in an elastic strip. Zhurnal Prikladnoi Mekhaniki Tekhnicheskoi Fiziki. 4, 175–183 (1978)

    Google Scholar 

  84. Matbuly, M.S.: Analysis of mode III crack perpendicular to the interface between two dissimilar strips. Acta Mech. Sinica. 24, 433–438 (2008). https://doi.org/10.1007/s10409-008-0173-y

    Article  MATH  Google Scholar 

  85. Meleshko, V.V., Tokovyy, Y.V., On, F.P.: Papkovich’s algorithm in the method of homogeneous solutions for a two-dimensional biharmonic problem in a rectangular domain (in Ukrainian). Math. Methods Phys. Mech. Fields. 49(4), 69–83 (2006)

    Google Scholar 

  86. Melnik, R.V.N.: Discrete Models of Coupled Dynamic Thermoelasticity for Stress-Temperature Formulations, pp. 1–20. Department of Mathematics and Computing, University of Southern Queensland, Australia

    Google Scholar 

  87. Menouillard, T., Belytschko, T.: Analysis and computations of oscillating crack propagation in a heated strip. Int. J. Fract. 167, 57–70 (2011)

    Article  MATH  Google Scholar 

  88. Mikhailov, L.G.: Integral Equations with a Kernel of Homogeneous Degree (in Russian). Dopish, Dushanbe (1966)

    Google Scholar 

  89. Mikhlin, S.G.: Singular Integral Equations (in Russian). Nauka, M. (1968)

    Google Scholar 

  90. Mirsalimov, M.V.: Modeling the effect of crack closure in a strip of tapered thickness under uneven heating. J. Mach. Manuf. Reliab. 39(4), 351–358 (2010)

    Article  Google Scholar 

  91. Morozov, N.F.: Mathematical Questions of the Crack Theory (in Russian). Nauka. Main editorial office of physical and mathematical literature, M. (1984) 256 с

    Google Scholar 

  92. Mykhaskiv, V.V., Khay, O.M.: Interaction between rigid-disc inclusion and penny-shaped crack under elastic time-harmonic wave incidence. Int. J. Solids Struct. 46(3–4), 602–616 (2009)

    Article  MATH  Google Scholar 

  93. Mykhas’kiv, V., Stankevych, V., Zhbadynskyi, I., Zhang, C.: 3-D dynamic interaction between a penny-shaped crack and a thin interlayer joining two elastic half-spaces. Int. J. Fract. 159(2), 137–149 (2009)

    Article  MATH  Google Scholar 

  94. Nikolaev, A.G., Protsenko, V.S.: Generalized Fourier Method in Spatial Problems of Elasticity Theory (in Russian). KhAI, Kharkov (2011) 344 p

    Google Scholar 

  95. Noble, B.: Methods Based on the Wiener-Hopf Technique for the Solution of Partial Differential Equations, 2nd edn. American Mathematical Society (1988)

    MATH  Google Scholar 

  96. Nowacki, W.: Thermoelasticity. Pergamon (1986) 578 p

    MATH  Google Scholar 

  97. Onishchuk, O.V., Popov, G.Y., Farshayt, P.G.: The problem about bend of rectangular plate with linear pile, which goes on the fixed side by one end. Mech. Solids. 6, 160–167 (1988)

    Google Scholar 

  98. Parmerter, R.R., Mukherji, B.: Stress intensity factors for an edge-cracked strip in bending. Int. J. Fract. 10, 441–444 (1974)

    Article  Google Scholar 

  99. Pickett, G., Jyengar, K.T.S.: Stress concentrations in post-tensioned prestressed concrete beams. J. Technol. India. 1(2) (1956)

    Google Scholar 

  100. Plyat, S.N., Sheinker, N., Ya.: Two-dimensional thermoelastic problem for a continuously accumulating half-strip. Prikladnaya Mekhanika. 5(1), 52–59 (1969)

    Google Scholar 

  101. Poberezhnyi, O.V.: A strip with a boundary crack under the action of a heat source. Metematicheskie Metody I Fiziko-Mekhanicheskie Polya. 36, 97–101 (1992)

    Google Scholar 

  102. Popov, G.Y., Abdimanov, S.A., Ephimov, V.V.: Green’s Functions and Matrices of the One-Dimensional Boundary Problems (in Russian). Raczah, Almati (1999) 133 p

    Google Scholar 

  103. Popov, G.Y.: The Elastic Stress’ Concentration Around Dies, Cuts, Thin Inclusions and Reinforcements (in Russian). Nauka, Moskow (1982) 344 p

    Google Scholar 

  104. Popov, V.G.: A dynamic contact problem which reduces to a singular integral equation with two fixed singularities. J. Appl. Math. Mech. 76(3), 348–357 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  105. Popov, V.G.: Harmonic vibrations of a half-space with a surface-breaking crack under conditions of out-of-plane deformation. Mech. Solids. 48(2), 194–202 (2013)

    Article  Google Scholar 

  106. Qing, H., Yang, W., Lu, J., Li, D.-F.: Thermal-stress analysis for a strip of finite width containing a stack of edge cracks. J. Eng. Math. 61, 161–169 (2008)

    Article  MATH  Google Scholar 

  107. Qizhi, W.: The crack-line stress field method for analysing SIFs of strips – illustrated with an eccentrically cracked tension strip. Int. J. Fract. 59, R39–R43 (1993)

    Article  Google Scholar 

  108. Rychahivskyy, A.V., Tokovyy, Y.V.: Correct analytical solutions to the thermo-elasticity problems in a semi-plane. J. Therm. Stress. 31(11), 1125–1145 (2008)

    Article  Google Scholar 

  109. Saakyan, A.V.: Method of discrete singularities as applied to the solution of singular integral equations with a fixed singularity (in Russian). Proc. Natl. Acad Sci. Armenia. 53(3), 12–19 (2000)

    Google Scholar 

  110. Savruk, M.P.: Two-Dimensional Problems of Elasticity for Bodies with Cracks (in Russian). Naukova dumka, Kiev (1981) 324 p

    MATH  Google Scholar 

  111. Savruk, M.P., Osiv, P.N., Prokopchuk, I.V.: Numerical Analysis in Plane Problems of Crack Theory (in Russian), p. 248. Naukova dumka, Kiev (1989)

    Google Scholar 

  112. Sebryakov, G.G., Kovalenko, M.D., Menshova, I.V., Shulyakovskaya, T.D.: An odd-symmetric boundary-value problem for a semistrip with longitudinal rigidity ribs: biorthogonal sets of functions and Lagrange expansions. Dokl. Phys. 61(5), 247–251 (2016)

    Article  Google Scholar 

  113. Seremet, V.: Static equilibrium of a thermoelastic half-plane: Green’s functions and solutions in integrals. Arch. Appl. Mech. 84, 553–570 (2014)

    Article  MATH  Google Scholar 

  114. Shevchenko, A.Y.: Thermally stressed state of rigidly fastened half-strips of the same width. Prikladnaya Mekhanika. 13(9), 66–72 (1977)

    MATH  Google Scholar 

  115. Shabozov, M.S.: An approach to the investigation of optimal quadrature formulas for singular integrals with fixed singularity. Ukr. Math. J. 47(9), 1479–1485 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  116. Shamrovskiy, A.D., Merkotan, G.V.: Dynamic problem of generalized thermoelasticity for an isotropic half-space (in Russian). East. Eur. J. Adv. Technol. 3(51), 56–59 (2011)

    Google Scholar 

  117. Singh, B.M., Dhaliwal, R.S.: Three coplanar Griffith cracks in an infinite elastic strip. J. Elast. 12(1), 127–141 (1982)

    Article  MATH  Google Scholar 

  118. Slepyan, L.I.: Mechanics of Cracks (in Russian), 2nd edn. Sudostroenie, L. (1990) 296 p

    Google Scholar 

  119. Soldatov, A.P.: To the theory of singular integro-functional operators (in Russian). Differential Equ. 13(1), 140–154 (1977)

    Google Scholar 

  120. Stepanova, L.V.: Stresses near the tip of a transverse shear crack under plane stress conditions in a perfectly plastic material (in Russian). Bull. Samara State Univ. Nat. Sci. Ser. 2(24), 78–84 (2002)

    MATH  Google Scholar 

  121. Sulym, H.: Fundamentals of the Mathematical Theory of Thermoelastic Equilibrium of Deformable Solids with Thin Inclusions (in Ukrainian). Proslyd.-ed. center of the National Academy of Sciences, Lviv (2007) 716 p

    Google Scholar 

  122. Suchevan, V.G.: Stress state of an elastic half-strip with embedded edges (in Russian). Math. Investig. 40, 122–135 (1976)

    Google Scholar 

  123. Tada, H., Paris, P.C., Irwin, G.R.: The Stress Analysis of Cracks: Handbook. Del Research Corp., Hellertown (1973) 385 p

    Google Scholar 

  124. Teodorescu, P.P.: Probleme Plane in teoria elasticitatii, vol. 1. Editura Acad., Republicii Populare Romine (1961)

    Google Scholar 

  125. Thecaris, P.: The stress distribution in a semi-infinite strip subjected to a concentrated load. Trans. J. Appl. Mech. 26(3), 401–406 (1959)

    Article  MathSciNet  Google Scholar 

  126. Theotokoglou, E.N., Tsamasphyros, G.J.: Integral equations for any configuration of cured cracks and holes in an elastic strip. Ingenieur-Archiv. 57, 3–15 (1987)

    Article  MATH  Google Scholar 

  127. Tianyou, F.: Exact solutions of semi-infinite crack in a strip. Chin. Phys. Lett. 7(9), 402–405 (1990)

    Article  Google Scholar 

  128. Tian-You, F.: Stress intensity factors of mode I and mode II for an infinite crack in a strip. Int. J. Fract. 46, R11–R16 (1990)

    Article  Google Scholar 

  129. Tokovyy, Y., Chien-Ching, M.: An explicit-form solution to the plane elasticity and thermoelasticity problems for anisotropic and inhomogeneous solids. Int. J. Solids Struct. 46, 3850–3859 (2009)

    Article  MATH  Google Scholar 

  130. Trapeznikov, L.P.: Influence lines for normal stresses in half strip (in Russian). Proc. All-Union Scientif. Res. Inst. Hydromech. 73 (1963)

    Google Scholar 

  131. Tricomi, F.: On Linear Equations of Mixed Type (in Russian). Gostekhisdat, M. (1948)

    Google Scholar 

  132. Ulitko, A.F., Ostryk, V.I.: Interphase crack at the interface between a circular inclusion and a matrix (in Ukrainian). Phys. Math. Model. Inf. Technol. 3, 138–149 (2006)

    Google Scholar 

  133. Ustinov, K.B.: Once Again to the Problem of a Half-Plane Weakened by a Semi-Infinite Crack Parallel to the Boundary (in Russian), vol. 4. Herald PNIPU (2013)

    Google Scholar 

  134. Veremeychik, A.I., Garbachevskiy, V.V., Khvisevich, V.M.: To the solving of plane boundary problems of thermoelasticity for non-homogeneous bodies by potential method (in Russian). Repository BNTU, 184–189

    Google Scholar 

  135. Vihak, V.M., Yuzvyak, M.Y., Yasinskij, A.V.: The solution of the plane thermoelasticity problem for a rectangular domain. J. Therm. Stress. 21(5), 545–561 (1998)

    Article  MathSciNet  Google Scholar 

  136. Vorovich, I.I., Aleksandrov, V.M., Babeshko, V.A.: Nonclassical Mixed Problems of Elasticity (in Russian). Nauka, M. (1974) 456 p

    Google Scholar 

  137. Vorovich, I.I., Kopasenko, V.V.: Some problems in the theory of elasticity for a semi-infinite strip. PMM. 30(1), 109–115 (1966)

    MATH  Google Scholar 

  138. Wu, X.-F., Lilla, E., Zou, W.-S.: A semi-infinite internal crack between two bonded dissimilar elastic strips. Arch. Appl. Mech. 72, 630–636 (2002)

    Article  MATH  Google Scholar 

  139. Xia, R., Guo, Y., Li, W.: Study on generalized thermoelastic problem of semi-infinite plate heated locally by the pulse laser. Int. J. Eng. Pract. Res. (IJEPR). 3(4), 95–99 (2014)

    Article  Google Scholar 

  140. Yavorskii, M.S.: Thermal stress state of strip-plate with heat sources. Prikladnaya Mekhanika. 18(10), 86–91 (1982)

    Google Scholar 

  141. Zamyatin, V.M., Makhov, A.V., Svetashkov, A.A.: Solution of plane problems of elasticity theory for a strip using a diagonalized system of equilibrium equations (in Russian). Bull. Tomsk Polytechnic Univ. 309(6), 135–139 (2006)

    Google Scholar 

  142. Zhuk, Y.A., Senchenkov, I.K.: Approximate model of thermomechanically coupled inelastic strain cycling. Int. Appl. Mech. 39(3), 300–306 (2003)

    Article  MATH  Google Scholar 

  143. Zorski, H.: A semi-infinite strip with discontinuous boundary conditions. Arch. Mech. Stosowanej. 10(3), 371–397 (1958)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vaysfeld, N., Zhuravlova, Z. (2023). Review. In: Mixed Boundary Problems in Solid Mechanics. UNITEXT(), vol 155. Springer, Cham. https://doi.org/10.1007/978-3-031-37826-3_2

Download citation

Publish with us

Policies and ethics