Skip to main content

Laboratory Evaluation of the Lidar Particle Depolarization Ratio (PDR) of Sulfates, Soot, and Mineral Dust at 180.0° Lidar Backscattering Angle

  • Conference paper
  • First Online:
Proceedings of the 30th International Laser Radar Conference (ILRC 2022)

Abstract

In polarization lidar field experiments, the particles depolarization ratio (PDR) is key for accurate retrievals of particles backscattering vertical profiles specific to nonspherical particles, such as mineral dust. Precise values of the intrinsic depolarization of mineral dust are however difficult to obtain, due to the complexity of mineral dust in size, shape, and complex refractive index, which prevents from analytical solutions to the Maxwell’s equations. In this contribution, a new approach is proposed, based on a laboratory experiment, to provide accurate evaluations of the lidar PDR of mineral dust and soot particles in laboratory (Miffre et al., J Quant Spectrosc Radiat Transf 169:79–90, 2016). This laboratory aerosol Pi-polarimeter takes benefit from the scattering matrix formalism to provide accurate evaluations of the lidar PDR in laboratory in the exact lidar backscattering direction of 180.0°, which is a world first (Miffre et al., J Quant Spectrosc Radiat Transf 169:79–90, 2016). After detailing the principle of the Pi-polarimeter, case studies are considered to reveal the intrinsic PDR of several mineral dust samples differing in size and mineralogy, allowing for the first time to our knowledge, to experimentally investigate the dependence of the lidar PDR with size and complex refractive index. The case study of soot particles (lidar PDR in the 10% range) is also studied (Paulien et al., J Quant Spectrosc Radiat Transf 260:107451, 2021), together with that of core-shell organic sulfates (Dubois et al., Phys Chem Chem Phys 23:5927–5935, 2021). We believe these laboratory findings, which provide accurate evaluations of lidar PDR at 180.0° lidar angle, may be used by the lidar community to interpret the complexity and the wealth of polarization lidar signals, which are every day worldwide acquired.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Miffre, A., Mehri, T., Francis, M., Rairoux, P.: UV–VIS depolarization from Arizona Test Dust particles at exact backscattering angle. J. Quant. Spectrosc. Radiat. Transf. 169, 79–90 (2016)

    Article  Google Scholar 

  2. Paulien, L., Ceolato, R., Fossard, F., Rairoux, P., Miffre, A.: (UV, VIS) laboratory evaluation of the lidar depolarization ratio of freshly emitted soot aggregates from pool fire in ambient air at exact backscattering angle. J. Quant. Spectrosc. Radiat. Transf. 260, 107451 (2021)

    Article  Google Scholar 

  3. Dubois, C., Cholleton, D., Gemayel, R., Chen, Y., Surratt, J.D., George, C., Rairoux, P., Miffre, A., Riva, M.: Decrease in sulfate aerosol light backscattering by reactive uptake of isoprene epoxydiols. Phys. Chem. Chem. Phys. 23, 5927–5935 (2021)

    Article  Google Scholar 

  4. Tesche, M., Ansmann, A., Müller, D., Althausen, D., Engelmann, R., Freudenthaler, V., Groß, S.: Vertically resolved separation of dust and smoke over Cape Verde using multiwavelength Raman and polarization lidars during Saharan Mineral Dust Experiment 2008. J. Geophys. Res. 114 (2009)

    Google Scholar 

  5. Mishchenko, M.I., Travis, L., Lacis, A.: Scattering, Absorption, and Emission of Light by Small Particles. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  6. Müller, D., Veselovskii, I., Kolgotin, A., Tesche, M., Ansmann, A., Dubovik, O.: Vertical profiles of pure dust and mixed smoke–dust plumes inferred from inversion of multiwavelength Raman/polarization lidar data and comparison to AERONET retrievals and in situ observations. Appl. Opt. 52, 3178 (2013)

    Article  Google Scholar 

  7. Mehri, T., Kemppinen, O., David, G., Lindqvist, H., Tyynelä, J., Nousiainen, T., Rairoux, P., Miffre, A.: Investigating the size, shape and surface roughness dependence of polarization lidars with light-scattering computations on real mineral dust particles: application to dust particles’ external mixtures and dust mass concentration retrievals. Atmos. Res. 203, 44–61 (2018)

    Article  Google Scholar 

  8. Shang, X., et al.: Optical characterization of pure pollen types using a multi-wavelength Raman polarization lidar. Atmos. Chem. Phys. 20, 15323–15339 (2020)

    Article  Google Scholar 

  9. Miffre, A., Cholleton, D., Rairoux, P.: Investigating the size and refractive index dependence of the lidar PDR of pure dust with a laboratory polarimeter at 180.0° exact backscattering angle. Atmos. Meas. Tech. Submitted (2022)

    Google Scholar 

  10. Cholleton, D., Rairoux, P., Miffre, A.: Laboratory evaluation of the (355, 532) nm particle depolarization ratio of pure pollen at 180.0° lidar backscattering angle. Remote Sens. 14(15), 3767 (2022)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Miffre .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cholleton, D., Rairoux, P., Miffre, A. (2023). Laboratory Evaluation of the Lidar Particle Depolarization Ratio (PDR) of Sulfates, Soot, and Mineral Dust at 180.0° Lidar Backscattering Angle. In: Sullivan, J.T., et al. Proceedings of the 30th International Laser Radar Conference. ILRC 2022. Springer Atmospheric Sciences. Springer, Cham. https://doi.org/10.1007/978-3-031-37818-8_35

Download citation

Publish with us

Policies and ethics