Skip to main content

Models of Noninvasive Mechanical Ventilation in Pandemic Conditions

  • Chapter
  • First Online:
Noninvasive Ventilation Outside Intensive Care Unit

Abstract

SARS-CoV-2 pneumonia can be associated with hypoxaemia, which can be very severe and lead to death. Treatment of hypoxaemia with oxygen therapy and respiratory support is therefore key to prevent mortality. In most cases, hypoxaemia can be adequately controlled with conventional oxygen therapy (COT) in a conventional hospitalisation area. However, in a minority of cases, hypoxaemia worsens and escalation to noninvasive respiratory support (NIRS) devices is necessary: high-flow nasal cannula (HFNC), continuous positive airway pressure (CPAP), bilevel positive airway pressure (BPAP); under close monitoring in an intermediate respiratory care unit (IRCU). Early initiation of NIRS is of vital importance in order to halt the progression of hypoxaemia and, consequently, to avoid escalation to orotracheal intubation-invasive mechanical ventilation (OTI-IMV), with the complications that this entails (bacterial pneumonia associated with IMV, nosocomial infections, polyneuromyopathy etc.). The main criteria to proceed with escalation from COT to NIRS is the need for an FiO2 ≥ 0.40 under COT to maintain an SpO2 ≥ 94%; other criteria are a PaO2/FiO2 ratio ≤ 200, a tachypnoea >25 breaths/min and the use of accessory respiratory musculature. HFNC or CPAP can be used alone or in alternating combination, with the combination being preferred in more severe cases (SpO2 < 92% despite HFNC, PaO2/FiO2 ratio < 100, tachypnoea > 25 breaths/min and/or use of accessory respiratory musculature despite HFNC) and in subjects with obesity (BMI > 30 kg/m2) or with sleep apnoea. Prone decubitus sessions are recommended, especially under HFNC, to increase oxygenation and thus avoid OTI-IMV. The most important parameters that allow us to assess the patient’s response to NIRS are the PaO2/FiO2 ratio (or, failing that, the SpO2/FiO2 ratio), the respiratory rate (RR), the use or non-use of accessory respiratory muscles, and the dyspnoea. Others are the alveoloarterial oxygen gradient, the HACOR index, the ROX index and the oesophageal pressure. It is reasonable to allow a window of opportunity of 48–72 h for NIRS from its initiation before considering escalation to OTI-IMV, without entailing to a significant delay in OTI-IMV leading to a significant impact on mortality in the case of NIRS failure; the benefit of avoiding OTI-IMV (which is avoided in 74.4% of cases) is considered much greater in the event of successful NIRS. After 48–72 h, if the patient remains the same or even worsens (SpO2 < 92%, PaO2/FiO2 ratio ≤ 100, decreasing curve in SpO2 even though SpO2 is ≥92%, tachypnoea >25 breaths/min, use of accessory respiratory muscles), despite optimised NIRS (with high FiO2 and high flows or pressures), OTI-IMV will be performed, since after this time the probabilities of successful NIRS are low and, in contrast, the delay in OTI-IMV becomes significant and, consequently, will have a significant impact on mortality. Finally, in case of successful NIRS, de-escalation from NIRS to COT will generally be performed when NIRS can be lowered to an FiO2 ≤ 0.40 so that the patient maintains an SpO2 ≥ 92%, a RR ≤ 25 breaths/min and no accessory respiratory muscle use for at least 30 min.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ARDS:

Acute respiratory distress syndrome

BMI:

Body mass index

BPAP:

Bilevel positive airway pressure

bpm:

Breaths/minute

cmH2O:

Centimetres of water

COT:

Conventional oxygen therapy

COVID-19:

Coronavirus disease 2019

CPAP:

Continuous positive airway pressure

EPAP:

Expiratory positive airway pressure

FiO2:

Inspiratory oxygen fraction

H:

Hour

HACOR index:

Heart rate, acidosis, consciousness, oxygenation, respiratory rate

HFNC:

High-flow nasal cannula

ICU:

Intensive care unit

IMV:

Invasive mechanical ventilation

IPAP:

Inspiratory positive airway pressure

IRCU:

Intermediate respiratory care unit

kg:

Kilogram

L:

Litre

lpm:

Litres/minute

min:

Minute

ml:

Millilitre

mmHg:

Millimetres of mercury

NIRS:

Noninvasive respiratory support

NIV:

Noninvasive ventilation

OTI:

Orotracheal intubation

PaCO2:

Arterial partial pressure of carbon dioxide

PAFI:

PaO2/FiO2 ratio

PaO2:

Arterial partial pressure of oxygen

PEEP:

Positive end-expiratory pressure. PEEP = EPAP

Pplat:

Plateau pressure

PS:

Pressure support = IPAP – EPAP

P-SILI:

Patient self-inflicted lung injury

ROX index:

(SpO2/FiO2)/RR ratio

RR:

Respiratory rate

SAFI:

SpO2/FiO2 ratio

SARS-CoV-2:

Severe acute respiratory syndrome coronavirus 2

SpO2:

Oxyhaemoglobin saturation

VT:

Tidal volume

References

  1. Hospital de Emergencias Enfermera Isabel Zendal | Comunidad de Madrid [Internet]. [cited 2022 Apr 26]. https://www.comunidad.madrid/centros/hospital-emergencias-enfermera-isabel-zendal

  2. Papazian L, Aubron C, Brochard L, Chiche JD, Combes A, Dreyfuss D, et al. Formal guidelines: management of acute respiratory distress syndrome. Ann Intensive Care. 2019;9(1):69. https://doi.org/10.1186/s13613-019-0540-9. PMID: 31197492; PMCID: PMC6565761.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Thompson BT, Chambers RC, Liu KD. Acute respiratory distress syndrome. N Engl J Med. 2017;377(6):562–72. https://doi.org/10.1056/NEJMra1608077. PMID: 28792873.

    Article  CAS  PubMed  Google Scholar 

  4. Fan E, Del Sorbo L, Goligher EC, Hodgson CL, Munshi L, Walkey AJ, et al. An Official American Thoracic Society/European Society of Intensive Care Medicine/Society of Critical Care Medicine Clinical Practice Guideline: mechanical ventilation in adult patients with acute respiratory distress syndrome. Am J Respir Crit Care Med. 2017;195(9):1253–63. https://doi.org/10.1164/rccm.201703-0548ST. Erratum in: Am J Respir Crit Care Med. 2017 Jun 1;195(11):1540. PMID: 28459336.

    Article  PubMed  Google Scholar 

  5. Mosier JM, Sakles JC, Whitmore SP, Hypes CD, Hallett DK, Hawbaker KE, et al. Failed noninvasive positive-pressure ventilation is associated with an increased risk of intubation-related complications. Ann Intensive Care. 2015;5:4. https://doi.org/10.1186/s13613-015-0044-1. PMID: 25852964; PMCID: PMC4385202.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Agarwal R, Reddy C, Aggarwal AN, Gupta D. Is there a role for noninvasive ventilation in acute respiratory distress syndrome? A meta-analysis. Respir Med. 2006;100(12):2235–8. https://doi.org/10.1016/j.rmed.2006.03.018. Epub 2006 May 5. PMID: 16678394.

    Article  PubMed  Google Scholar 

  7. Meeder AM, Tjan DHT, van Zanten ARH. Noninvasive and invasive positive pressure ventilation for acute respiratory failure in critically ill patients: a comparative cohort study. J Thorac Dis. 2016;8(5):813–25. https://doi.org/10.21037/jtd.2016.03.21. PMID: 27162654; PMCID: PMC4842833.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Luján M, Sayas J, Mediano O, Egea C. Non-invasive respiratory support in COVID-19: a narrative review. Front Med (Lausanne). 2021;8:788190. https://doi.org/10.3389/fmed.2021.788190. PMID: 35059415; PMCID: PMC8763700.

    Article  PubMed  Google Scholar 

  9. Franco C, Facciolongo N, Tonelli R, Dongilli R, Vianello A, Pisani L, et al. Feasibility and clinical impact of out-of-ICU noninvasive respiratory support in patients with COVID-19-related pneumonia. Eur Respir J. 2020;56(5):2002130. https://doi.org/10.1183/13993003.02130-2020. PMID: 32747398; PMCID: PMC7397952.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Aliberti S, Radovanovic D, Billi F, Sotgiu G, Costanzo M, Pilocane T, et al. Helmet CPAP treatment in patients with COVID-19 pneumonia: a multicentre cohort study. Eur Respir J. 2020;56(4):2001935. https://doi.org/10.1183/13993003.01935-2020. PMID: 32747395; PMCID: PMC7397948.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Oranger M, Gonzalez-Bermejo J, Dacosta-Noble P, Llontop C, Guerder A, Trosini-Desert V, et al. Continuous positive airway pressure to avoid intubation in SARS-CoV-2 pneumonia: a two-period retrospective case-control study. Eur Respir J. 2020;56(2):2001692. https://doi.org/10.1183/13993003.01692-2020. PMID: 32430410; PMCID: PMC7241113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Demoule A, Vieillard Baron A, Darmon M, Beurton A, Géri G, Voiriot G, et al. High-flow nasal cannula in critically III patients with severe COVID-19. Am J Respir Crit Care Med. 2020;202(7):1039–42. https://doi.org/10.1164/rccm.202005-2007LE. PMID: 32758000; PMCID: PMC7528777.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bonnet N, Martin O, Boubaya M, Levy V, Ebstein N, Karoubi P, et al. High flow nasal oxygen therapy to avoid invasive mechanical ventilation in SARS-CoV-2 pneumonia: a retrospective study. Ann Intensive Care. 2021;11(1):37. https://doi.org/10.1186/s13613-021-00825-5. PMID: 33638752; PMCID: PMC7910764.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Medrinal C, Gillet A, Boujibar F, Dugernier J, Zwahlen M, Lamia B, et al. Role of non-invasive respiratory supports in COVID-19 acute respiratory failure patients with do not intubate orders. J Clin Med. 2021;10(13):2783. https://doi.org/10.3390/jcm10132783. PMID: 34202895; PMCID: PMC8267931.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Walker J, Dolly S, Ng L, Prior-Ong M, Sabapathy K. The role of CPAP as a potential bridge to invasive ventilation and as a ceiling-of-care for patients hospitalized with Covid-19—an observational study. PLoS One. 2020;15(12):e0244857. https://doi.org/10.1371/journal.pone.0244857. PMID: 33382796; PMCID: PMC7774971.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bradley P, Wilson J, Taylor R, Nixon J, Redfern J, Whittemore P, et al. Conventional oxygen therapy versus CPAP as a ceiling of care in ward-based patients with COVID-19: a multi-centre cohort evaluation. EClinicalMedicine. 2021;40:101122. https://doi.org/10.1016/j.eclinm.2021.101122. Epub 2021 Sep 8. PMID: 34514360; PMCID: PMC8424135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Coppadoro A, Benini A, Fruscio R, Verga L, Mazzola P, Bellelli G, et al. Helmet CPAP to treat hypoxic pneumonia outside the ICU: an observational study during the COVID-19 outbreak. Crit Care. 2021;25(1):80. https://doi.org/10.1186/s13054-021-03502-y. PMID: 33627169; PMCID: PMC7903369.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Gough C, Casey M, McCartan TA, Franciosi AN, Nash D, Doyle D, et al. Effects of non-invasive respiratory support on gas exchange and outcomes in COVID-19 outside the ICU. Respir Med. 2021;185:106481. https://doi.org/10.1016/j.rmed.2021.106481. Epub 2021 May 25. PMID: 34077874; PMCID: PMC8143910.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Perkins GD, Ji C, Connolly BA, Couper K, Lall R, Baillie JK, et al. Effect of noninvasive respiratory strategies on intubation or mortality among patients with acute hypoxemic respiratory failure and COVID-19: the RECOVERY-RS randomized clinical trial. JAMA. 2022;327(6):546–58. https://doi.org/10.1001/jama.2022.0028. PMID: 35072713; PMCID: PMC8787685.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Grieco DL, Menga LS, Cesarano M, Rosà T, Spadaro S, Bitondo MM, et al. Effect of helmet noninvasive ventilation vs high-flow nasal oxygen on days free of respiratory support in patients with COVID-19 and moderate to severe hypoxemic respiratory failure: the HENIVOT randomized clinical trial. JAMA. 2021;325(17):1731–43. https://doi.org/10.1001/jama.2021.4682. PMID: 33764378; PMCID: PMC7995134.

    Article  CAS  PubMed  Google Scholar 

  21. Ospina-Tascón GA, Calderón-Tapia LE, García AF, Zarama V, Gómez-Álvarez F, Álvarez-Saa T, et al. Effect of high-flow oxygen therapy vs conventional oxygen therapy on invasive mechanical ventilation and clinical recovery in patients with severe COVID-19: a randomized clinical trial. JAMA. 2021;326(21):2161–71. https://doi.org/10.1001/jama.2021.20714. Erratum in: JAMA. 2022 Mar 15;327(11):1093. PMID: 34874419; PMCID: PMC8652598.

    Article  CAS  PubMed  Google Scholar 

  22. Cinesi Gómez C, Peñuelas Rodríguez Ó, Luján Torné M, Egea Santaolalla C, Masa Jiménez JF, García Fernández J, et al. Recomendaciones de consenso respecto al soporte respiratorio no invasivo en el paciente adulto con insuficiencia respiratoria aguda secundaria a infección por SARS-CoV-2 [Clinical consensus recommendations regarding non-invasive respiratory support in the adult patient with acute respiratory failure secondary to SARS-CoV-2 infection]. Arch Bronconeumol. 2020;56:11–18. Spanish. https://doi.org/10.1016/j.arbres.2020.03.005. Epub 2020 Mar 30. PMID: 34629620; PMCID: PMC7270645.

  23. Chalmers JD, Crichton ML, Goeminne PC, Cao B, Humbert M, Shteinberg M, et al. Management of hospitalised adults with coronavirus disease 2019 (COVID-19): a European Respiratory Society living guideline. Eur Respir J. 2021;57(4):2100048. https://doi.org/10.1183/13993003.00048-2021. Erratum in: Eur Respir J. 2022 Aug 10;60(2): PMID: 33692120; PMCID: PMC7947358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Boscolo A, Pasin L, Sella N, Pretto C, Tocco M, Tamburini E, et al. Outcomes of COVID-19 patients intubated after failure of non-invasive ventilation: a multicenter observational study. Sci Rep. 2021;11(1):17730. https://doi.org/10.1038/s41598-021-96762-1. PMID: 34489504; PMCID: PMC8421335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Vaschetto R, Barone-Adesi F, Racca F, Pissaia C, Maestrone C, Colombo D, et al. Outcomes of COVID-19 patients treated with continuous positive airway pressure outside the intensive care unit. ERJ Open Res. 2021;7(1):00541–2020. https://doi.org/10.1183/23120541.00541-2020. PMID: 33527074; PMCID: PMC7607967.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Dupuis C, Bouadma L, de Montmollin E, Goldgran-Toledano D, Schwebel C, Reignier J, et al. Association between early invasive mechanical ventilation and day-60 mortality in acute hypoxemic respiratory failure related to coronavirus disease-2019 pneumonia. Crit Care Explor. 2021;3(1):e0329. https://doi.org/10.1097/CCE.0000000000000329. PMID: 33521646; PMCID: PMC7838010.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Caballero-Eraso C, Pascual Martínez N, Mediano O, Egea Santaolalla C. Unidad de Cuidados Respiratorios Intermedios (UCRI) en la pandemia COVID-19 en España. La realidad [Intermediate respiratory care units (RICUs) during the COVID-19 pandemic. the reality]. Arch Bronconeumol. 2022;58(3):284–6. Spanish. https://doi.org/10.1016/j.arbres.2021.10.004. Epub 2021 Nov 1. PMID: 34744250; PMCID: PMC8559440.

  28. Heili-Frades S, Carballosa de Miguel MDP, Naya Prieto A, Galdeano Lozano M, Mate García X, Mahillo Fernández I, et al. Cost and mortality analysis of an intermediate respiratory care unit. Is it really efficient and safe? Arch Bronconeumol (Engl Ed). 2019;55(12):634–41. https://doi.org/10.1016/j.arbres.2019.06.008. Epub 2019 Oct 3. PMID: 31587917.

    Article  PubMed  Google Scholar 

  29. Stapleton RD, Wang BM, Hudson LD, Rubenfeld GD, Caldwell ES, Steinberg KP. Causes and timing of death in patients with ARDS. Chest. 2005;128(2):525–32. https://doi.org/10.1378/chest.128.2.525. PMID: 16100134.

    Article  PubMed  Google Scholar 

  30. O’Driscoll BR, Howard LS, Earis J, Mak V. British Thoracic Society Emergency Oxygen Guideline Group, BTS Emergency Oxygen Guideline Development Group. BTS guideline for oxygen use in adults in healthcare and emergency settings. Thorax. 2017;72(Suppl 1):ii1–90. https://doi.org/10.1016/10.1136/thoraxjnl-2016-209729. PMID: 28507176.

    Article  PubMed  Google Scholar 

  31. Brusasco C, Corradi F, Di Domenico A, Raggi F, Timossi G, Santori G, et al. Continuous positive airway pressure in COVID-19 patients with moderate-to-severe respiratory failure. Eur Respir J. 2021;57(2):2002524. https://doi.org/10.1183/13993003.02524-2020. PMID: 33033151; PMCID: PMC7545055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Alviset S, Riller Q, Aboab J, Dilworth K, Billy PA, Lombardi Y, et al. Continuous Positive Airway Pressure (CPAP) face-mask ventilation is an easy and cheap option to manage a massive influx of patients presenting acute respiratory failure during the SARS-CoV-2 outbreak: a retrospective cohort study. PLoS One. 2020;15(10):e0240645. https://doi.org/10.1371/journal.pone.0240645. PMID: 33052968; PMCID: PMC7556440.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Noeman-Ahmed Y, Gokaraju S, Powrie DJ, Amran DA, El Sayed I, Roshdy A. Predictors of CPAP outcome in hospitalized COVID-19 patients. Respirology. 2020;25(12):1316–9. https://doi.org/10.1111/resp.13964. Epub 2020 Nov 2. PMID: 33140491.

    Article  PubMed  Google Scholar 

  34. Cammarota G, Esposito T, Azzolina D, Cosentini R, Menzella F, Aliberti S, et al. Noninvasive respiratory support outside the intensive care unit for acute respiratory failure related to coronavirus-19 disease: a systematic review and meta-analysis. Crit Care. 2021;25(1):268. https://doi.org/10.1186/s13054-021-03697-0. PMID: 34330320; PMCID: PMC8324455.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Siddiqi HK, Mehra MR. COVID-19 illness in native and immunosuppressed states: a clinical-therapeutic staging proposal. J Heart Lung Transplant. 2020;39(5):405–7. https://doi.org/10.1016/j.healun.2020.03.012. Epub 2020 Mar 20. PMID: 32362390; PMCID: PMC7118652.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Watts ER, Walmsley SR. Inflammation and hypoxia: HIF and PHD isoform selectivity. Trends Mol Med. 2019;25(1):33–46. https://doi.org/10.1016/j.molmed.2018.10.006. Epub 2018 Nov 12. PMID: 30442494.

    Article  CAS  PubMed  Google Scholar 

  37. Laso Guzmán FJ. Introducción a la Medicina clínica. [Introduction to clinical medicine]. 4th ed. Barcelona: Elsevier Health Sciences; 2020. 813 p

    Google Scholar 

  38. Abbas AK, Lichtman AH, Pillai S. Inmunología celular y molecular [Cellular and molecular immunology]. 10th ed. Barcelona: Elsevier Health Sciences; 2022. 601 p.

    Google Scholar 

  39. Wu Z, McGoogan JM. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in china: summary of a report of 72 314 cases from the Chinese Center for Disease Control and Prevention. JAMA. 2020;323(13):1239–42. https://doi.org/10.1001/jama.2020.2648. PMID: 32091533.

    Article  CAS  PubMed  Google Scholar 

  40. D’Cruz RF, Hart N, Kaltsakas G. High-flow therapy: physiological effects and clinical applications. Breathe (Sheff). 2020;16(4):200224. https://doi.org/10.1183/20734735.0224-2020. PMID: 33664838; PMCID: PMC7910031.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Oczkowski S, Ergan B, Bos L, Chatwin M, Ferrer M, Gregoretti C, et al. ERS clinical practice guidelines: high-flow nasal cannula in acute respiratory failure. Eur Respir J. 2022;59(4):2101574. https://doi.org/10.1183/20734735.0224-2020. PMID: 33664838; PMCID: PMC7910031.

    Article  PubMed  Google Scholar 

  42. Sharma S, Danckers M, Sanghavi D, Chakraborty RK. High flow nasal cannula. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022. [cited 2022 Aug 26]. http://www.ncbi.nlm.nih.gov/books/NBK526071/.

    Google Scholar 

  43. Masclans JR, Pérez-Terán P, Roca O. The role of high flow oxygen therapy in acute respiratory failure. Med Intensiva. 2015;39(8):505–15. https://doi.org/10.1016/j.medin.2015.05.009. Epub 2015 Oct 1. PMID: 26429697.

    Article  CAS  PubMed  Google Scholar 

  44. Barrot Cortés E, Sánchez Gómez E. Manual de Procedimientos SEPAR 16. Ventilación mecánica no invasiva. Barcelona: Respira-Fundación Española del Pulmón-SEPAR; 2008. https://issuu.com/separ/docs/procedimientos16.

    Google Scholar 

  45. Amati F, Aliberti S, Misuraca S, Simonetta E, Bindo F, Vigni A, et al. Lung recruitability of COVID-19 pneumonia in patients undergoing helmet CPAP. Arch Bronconeumol. 2021;57:92–4. https://doi.org/10.1016/j.arbres.2020.09.017. Epub 2020 Oct 22. PMID: 34629680; PMCID: PMC7577873.

    Article  PubMed  Google Scholar 

  46. Terán Tinedo JR, Mariscal Aguilar P, Lorente González M, Cano Sanz E, Hernández Núñez J, Ortega Fraile MA, et al. Utilidad de la combinación de terapias de soporte respiratorio no invasivo en pacientes con síndrome de distrés respiratorio agudo secundario a neumonía por SARS-CoV-2. Arch Bronconeumol. 2022;58 Supl Congr 1:306–67. http://www.archbronconeumol.org/en-vol-58-num-sc1-sumario-X0300289622X00C10.

    Google Scholar 

  47. Ware LB, Matthay MA. The acute respiratory distress syndrome. N Engl J Med. 2000;342(18):1334–49. https://doi.org/10.1056/NEJM200005043421806. PMID: 10793167.

    Article  CAS  PubMed  Google Scholar 

  48. Berlin DA, Gulick RM, Martinez FJ. Severe Covid-19. N Engl J Med. 2020;383(25):2451–60. https://doi.org/10.1056/NEJMcp2009575. Epub 2020 May 15. PMID: 32412710.

    Article  CAS  PubMed  Google Scholar 

  49. Suárez Ortiz M, Rafael Terán JR, Lorente González M, Laorden Escudero D, Zevallos Villegas A, Cano Sanz E, et al. Efectos adversos del uso de perfusiones de morfina y dexmedetomidina en pacientes de una UCRI en un hospital monográfico de COVID-19. Arch Bronconeumol. 2022;58 Supl Congr 1:306–67. https://www.archbronconeumol.org/es-pdf-X0300289622032570.

    Google Scholar 

  50. Coppo A, Bellani G, Winterton D, Di Pierro M, Soria A, Faverio P, et al. Feasibility and physiological effects of prone positioning in non-intubated patients with acute respiratory failure due to COVID-19 (PRON-COVID): a prospective cohort study. Lancet Respir Med. 2020;8(8):765–74. https://doi.org/10.1016/S2213-2600(20)30268-X. Epub 2020 Jun 19. PMID: 32569585; PMCID: PMC7304954.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sartini C, Tresoldi M, Scarpellini P, Tettamanti A, Carcò F, Landoni G, et al. Respiratory parameters in patients with COVID-19 after using noninvasive ventilation in the prone position outside the intensive care unit. JAMA. 2020;323(22):2338–40. https://doi.org/10.1001/jama.2020.7861. PMID: 32412606; PMCID: PMC7229533.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bastoni D, Poggiali E, Vercelli A, Demichele E, Tinelli V, Iannicelli T, et al. Prone positioning in patients treated with non-invasive ventilation for COVID-19 pneumonia in an Italian emergency department. Emerg Med J. 2020;37(9):565–6. https://doi.org/10.1136/emermed-2020-209744. Epub 2020 Jul 6. PMID: 32748797; PMCID: PMC7497566.

    Article  PubMed  Google Scholar 

  53. Rialp Cervera G. Efectos del decúbito prono en el síndrome de distrés respiratorio agudo (SDRA). Med Intensiva. 2003;27(7):481–7.

    Article  Google Scholar 

  54. Ehrmann S, Li J, Ibarra-Estrada M, Perez Y, Pavlov I, McNicholas B, et al. Awake prone positioning for COVID-19 acute hypoxaemic respiratory failure: a randomised, controlled, multinational, open-label meta-trial. Lancet Respir Med. 2021;9(12):1387–95. https://doi.org/10.1016/S2213-2600(21)00356-8. Epub 2021 Aug 20. PMID: 34425070; PMCID: PMC8378833.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Coppo A, Winterton D, Benini A, Monzani A, Aletti G, Cadore B, et al. Rodin’s thinker: an alternative position in awake patients with COVID-19. Am J Respir Crit Care Med. 2021;204(6):728–30. https://doi.org/10.1164/rccm.202104-0915LE. PMID: 34242143; PMCID: PMC8521701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Coppola S, Chiumello D, Busana M, Giola E, Palermo P, Pozzi T, et al. Role of total lung stress on the progression of early COVID-19 pneumonia. Intensive Care Med. 2021;47(10):1130–9. https://doi.org/10.1007/s00134-021-06519-7. Epub 2021 Sep 16. Erratum in: Intensive Care Med. 2022 Mar;48(3):387-388. PMID: 34529118; PMCID: PMC8444534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Simonds AK. ERS practical handbook of noninvasive ventilation. Sheffield: European Respiratory Society; 2015. 325 p.

    Google Scholar 

  58. Duan J, Han X, Bai L, Zhou L, Huang S. Assessment of heart rate, acidosis, consciousness, oxygenation, and respiratory rate to predict noninvasive ventilation failure in hypoxemic patients. Intensive Care Med. 2017;43(2):192–9. https://doi.org/10.1007/s00134-016-4601-3. Epub 2016 Nov 3. PMID: 27812731.

    Article  CAS  PubMed  Google Scholar 

  59. Guia MF, Boléo-Tomé JP, Imitazione P, Polistina GE, Alves C, Ishikawa O, et al. Usefulness of the HACOR score in predicting success of CPAP in COVID-19-related hypoxemia. Respir Med. 2021;187:106550. https://doi.org/10.1016/j.rmed.2021.106550. Epub 2021 Jul 27. PMID: 34333389; PMCID: PMC8313899.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Chandel A, Patolia S, Brown AW, Collins AC, Sahjwani D, Khangoora V, et al. High-flow nasal cannula therapy in COVID-19: using the ROX index to predict success. Respir Care. 2021;66(6):909–19. https://doi.org/10.4187/respcare.08631. Epub 2020 Dec 16. PMID: 33328179.

    Article  PubMed  Google Scholar 

  61. Zucman N, Mullaert J, Roux D, Roca O, Ricard JD, Contributors. Prediction of outcome of nasal high flow use during COVID-19-related acute hypoxemic respiratory failure. Intensive Care Med. 2020;46(10):1924–6. https://doi.org/10.1007/s00134-020-06177-1. Epub 2020 Jul 15. PMID: 32671470; PMCID: PMC7362315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Vega ML, Dongilli R, Olaizola G, Colaianni N, Sayat MC, Pisani L, et al. COVID-19 pneumonia and ROX index: time to set a new threshold for patients admitted outside the ICU. Pulmonology. 2022;28(1):13–7. https://doi.org/10.1016/j.pulmoe.2021.04.003. Epub 2021 May 7. PMID: 34049831; PMCID: PMC8103151.

    Article  PubMed  Google Scholar 

  63. Esnault P, Cardinale M, Hraiech S, Goutorbe P, Baumstrack K, Prud’homme E, et al. High respiratory drive and excessive respiratory efforts predict relapse of respiratory failure in critically ill patients with COVID-19. Am J Respir Crit Care Med. 2020;202(8):1173–8. https://doi.org/10.1164/rccm.202005-1582LE. PMID: 32755309; PMCID: PMC7560807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lang M, Som A, Mendoza DP, Flores EJ, Reid N, Carey D, et al. Hypoxaemia related to COVID-19: vascular and perfusion abnormalities on dual-energy CT. Lancet Infect Dis. 2020;20(12):1365–6. https://doi.org/10.1016/S1473-3099(20)30367-4. Epub 2020 Apr 30. PMID: 32359410; PMCID: PMC7252023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Roca O, Caralt B, Messika J, Samper M, Sztrymf B, Hernández G, et al. An index combining respiratory rate and oxygenation to predict outcome of nasal high-flow therapy. Am J Respir Crit Care Med. 2019;199(11):1368–76. https://doi.org/10.1164/rccm.201803-0589OC. PMID: 30576221.

    Article  PubMed  Google Scholar 

  66. Xia J, Zhang Y, Ni L, Chen L, Zhou C, Gao C, et al. High-flow nasal oxygen in coronavirus disease 2019 patients with acute hypoxemic respiratory failure: a multicenter, retrospective cohort study. Crit Care Med. 2020;48(11):e1079–86. https://doi.org/10.1097/CCM.0000000000004558. PMID: 32826432; PMCID: PMC7467042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Blez D, Soulier A, Bonnet F, Gayat E, Garnier M. Monitoring of high-flow nasal cannula for SARS-CoV-2 severe pneumonia: less is more, better look at respiratory rate. Intensive Care Med. 2020;46(11):2094–5. https://doi.org/10.1007/s00134-020-06199-9. Epub 2020 Jul 31. PMID: 32737522; PMCID: PMC7393342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Chong WH, Saha BK, Hu K, Chopra A. The incidence, clinical characteristics, and outcomes of pneumothorax in hospitalized COVID-19 patients: a systematic review. Heart Lung. 2021;50(5):599–608. https://doi.org/10.1016/j.hrtlng.2021.04.005. Epub 2021 May 1. PMID: 34087677; PMCID: PMC8088235.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Shrestha DB, Sedhai YR, Budhathoki P, Adhikari A, Pokharel N, Dhakal R, et al. Pulmonary barotrauma in COVID-19: a systematic review and meta-analysis. Ann Med Surg (Lond). 2022;73:103221. https://doi.org/10.1016/j.amsu.2021.103221. Epub 2022 Jan 3. PMID: 35003730; PMCID: PMC8721930.

    Article  PubMed  Google Scholar 

  70. Lopes RD, de Barros E, Silva PGM, Furtado RHM, Macedo AVS, Ramacciotti E, Damini LP, et al. Randomized clinical trial to evaluate a routine full anticoagulation Strategy in Patients with Coronavirus Infection (SARS-CoV2) admitted to hospital: Rationale and design of the ACTION (AntiCoagulaTlon cOroNavirus)-Coalition IV trial. Am Heart J. 2021;238:1–11. https://doi.org/10.1016/j.ahj.2021.04.005. Epub 2021 Apr 20. PMID: 33891907; PMCID: PMC8057688.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Liu L, Xie J, Wu W, Chen H, Li S, He H, et al. A simple nomogram for predicting failure of non-invasive respiratory strategies in adults with COVID-19: a retrospective multicentre study. Lancet Digit Health. 2021;3(3):e166–74. https://doi.org/10.1016/S2589-7500(20)30316-2. Epub 2021 Feb 8. PMID: 33573999; PMCID: PMC7906717.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Menga LS, Cese LD, Bongiovanni F, Lombardi G, Michi T, Luciani F, et al. High failure rate of noninvasive oxygenation strategies in critically ill subjects with acute hypoxemic respiratory failure due to COVID-19. Respir Care. 2021;66(5):705–14. https://doi.org/10.4187/respcare.08622. Epub 2021 Mar 2. PMID: 33653913.

    Article  PubMed  Google Scholar 

  73. Teran-Tinedo JR, Gonzalez-Rubio J, Najera A, Castany-Faro A, Contreras MLN, Garcia IM, et al. Clinical characteristics and respiratory care in hospitalized vaccinated SARS-CoV-2 patients. EClinicalMedicine. 2022;48:101453. https://doi.org/10.1016/j.eclinm.2022.101453. Epub 2022 May 20. PMID: 35611064; PMCID: PMC9121909.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Chiner Vives E, Giner Donaire J. Manual de Procedimientos SEPAR 29. Sistemas de oxigenoterapia. Barcelona: Respira-Fundación Española del Pulmón-SEPAR; 2014. https://issuu.com/separ/docs/manual_29_sistemas_de_oxigenoterapia.

    Google Scholar 

  75. Arraiza Gulina N. Guía rápida y póster de dispositivos de oxigenoterapia para enfermería. Universidad Pública de Navarra. 2014–2015. https://academica-e.unavarra.es/bitstream/handle/2454/18478/Nahia%20Arraiza%20Gulina.pdf?seque.

  76. Kim MC, Lee YJ, Park JS, Cho YJ, Yoon HI, Lee CT, et al. Simultaneous reduction of flow and fraction of inspired oxygen (FiO2) versus reduction of flow first or FiO2 first in patients ready to be weaned from high-flow nasal cannula oxygen therapy: study protocol for a randomized controlled trial (SLOWH trial). Trials. 2020;21(1):81. https://doi.org/10.1186/s13063-019-4019-7. PMID: 31937322; PMCID: PMC6961313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lorente-González, M., Suárez-Ortiz, M., Terán-Tinedo, J.R., Churruca-Arróspide, M., Landete, P. (2023). Models of Noninvasive Mechanical Ventilation in Pandemic Conditions. In: Esquinas, A.M., Spicuzza, L., Scala, R. (eds) Noninvasive Ventilation Outside Intensive Care Unit. Noninvasive Ventilation. The Essentials. Springer, Cham. https://doi.org/10.1007/978-3-031-37796-9_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-37796-9_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-37795-2

  • Online ISBN: 978-3-031-37796-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics