Skip to main content

Revisiting and Extending PLS for Ordinal Measurement and Prediction

  • Chapter
  • First Online:
Partial Least Squares Path Modeling

Abstract

Traditionally, partial least squares (PLS) and consistent partial least squares (PLSc) assume the indicators to be continuous. To relax this restrictive assumption, ordinal partial least squares (OrdPLS) and ordinal consistent partial least squares have been developed. They are extensions of PLS and PLSc, respectively, that are able to take into account the nature of ordinal variables—both belonging to exogenous and endogenous constructs. In the PLS context, assessing the out-of-sample predictive power of models has increasingly gained interest. In contrast to PLS and PLSc, performing out-of-sample predictions is not a straightforward process for OrdPLS and OrdPLSc because the two assume that ordinal indicators are the outcome of categorized unobserved continuous variables, i.e., they rely on polychoric and polyserial correlations. In this chapter, we present OrdPLSpredict and OrdPLScpredict to perform out-of-sample predictions with models estimated by OrdPLS and OrdPLSc. A Monte Carlo simulation demonstrates the performance of our proposed approach. Finally, we provide concise guidelines using the open source R package cSEM to enable researchers to apply OrdPLSpredict and OrdPLScpredict using an empirical example.

An earlier version of this chapter was published in the following Ph.D. thesis: Schamberger T. (2022) Methodological Advances in Composite-based Structural Equation Modeling. University of Würzburg/University of Twente, https://doi.org/10.3990/1.9789036553759.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In line with recent literature (e.g., Benitez et al., 2020; Yu et al., 2021; Schamberger et al., 2023), we use the term ‘emergent variable’ to emphasize that the variable is not only a composite, i.e., a weighted linear combination of variables, but also a composite that conveys all the information between its indicators and other variables in the model.

  2. 2.

    Note that the following subsections contain large parts adapted from Schuberth et al. (2018). Which is released under a Creative Commons Attribution 4.0 International License (CC BY 4.0).

  3. 3.

    In empirical work two consecutive threshold parameters can be equal, \(\tau _{m-1}=\tau _m\), if the corresponding category \(x_m\) is not observed.

  4. 4.

    Note that the choice of inner weighting scheme can substantially affect the estimates in the case of models containing second-order constructs (Becker et al., 2012; Schuberth et al., 2020). For more details on the other inner weighting schemes, see Tenenhaus et al. (2005).

  5. 5.

    Here we do not consider the use of Mode B for latent variables. For a consistent version of PLS using Mode B, the interested reader is referred to Dijkstra (2011).

  6. 6.

    In cases where only values of a subset of the indicators associated with endogenous constructs are predicted, a subset of the indicators associated with the exogenous constructs might be sufficient.

References

  • Becker, J. M., Klein, K., & Wetzels, M. (2012). Hierarchical latent variable models in PLS-SEM: Guidelines for using reflective-formative type models. Long Range Planning, 45(5), 359–394.

    Article  Google Scholar 

  • Benitez, J., Henseler, J., Castillo, A., & Schuberth, F. (2020). How to perform and report an impactful analysis using partial least squares: Guidelines for confirmatory and explanatory IS research. Information & Management, 57(2), 1–16.

    Article  Google Scholar 

  • Bergami, M., & Bagozzi, R. P. (2000). Self-categorization, affective commitment and group self-esteem as distinct aspects of social identity in the organization. British Journal of Social Psychology, 39(4), 555–577.

    Article  Google Scholar 

  • Braojos, J., Benitez, J.e., Llorens, J., & Ruiz, L. (2020). Impact of IT integration on the firm’s knowledge absorption and desorption. Information & Management, 57(7), 103–290.

    Google Scholar 

  • Cantaluppi, G. (2012). A partial least squares algorithm handling ordinal variables also in presence of a small number of categories. arXiv preprint, arXiv:1212.5049

  • Cantaluppi, G., & Boari, G. (2016). A partial least squares algorithm handling ordinal variables. In H. Abdi, V. Esposito Vinzi, G. Russolillo, G. Saporta, & L. Trinchera (Eds.), The multiple facets of partial least squares and related methods: PLS, Paris, France, 2014 (pp. 295–306). Switzerland: Springer International Publishing.

    Google Scholar 

  • Cantaluppi, G., & Schuberth, F. (2019). A prediction method for ordinal consistent partial least squares. In G. Arbia, S. Peluso, A. Pini, & G. Rivellini (Eds.), Smart statistics for smart applications—Book of short papers SIS2019. Milan.

    Google Scholar 

  • Carrión, G. C., Henseler, J., Ringle, C. M., & Roldán, J. L. (2016). Prediction-oriented modeling in business research by means of PLS path modeling: Introduction to a JBR special section. Journal of Business Research, 69(10), 4545–4551.

    Article  Google Scholar 

  • Chin, W., Cheah, J. H., Liu, Y., Ting, H., Lim, X. J., & Cham, T. H. (2020). Demystifying the role of causal-predictive modeling using partial least squares structural equation modeling in information systems research. Industrial Management & Data Systems, 120(12), 2161–2209.

    Article  Google Scholar 

  • Cho, G., & Choi, J. Y. (2020). An empirical comparison of generalized structured component analysis and partial least squares path modeling under variance-based structural equation models. Behaviormetrika, 47, 243–272.

    Article  Google Scholar 

  • Dijkstra, T. K. (1985). Latent variables in linear stochastic models: Reflections on “Maximum Likelihood” and “Partial Least Squares” methods (Vol. 2). Amsterdam: Sociometric Research Foundation.

    Google Scholar 

  • Dijkstra, T. K. (2011). Consistent partial least squares estimators for linear and polynomial factor models. Technical Report. https://doi.org/10.13140/RG.2.1.3997.0405

  • Dijkstra, T. K. (2013). A note on how to make PLS consistent. Technical Report. https://doi.org/10.13140/RG.2.1.4547.5688

  • Dijkstra, T. K. (2017). A perfect match between a model and a mode. In H. Latan & R. Noonan (Eds.), Partial least squares path modeling: Basic concepts, methodological issues and applications (pp. 55–80). Cham: Springer.

    Google Scholar 

  • Dijkstra, T. K., & Henseler, J. (2015a). Consistent and asymptotically normal PLS estimators for linear structural equations. Computational Statistics & Data Analysis, 81, 10–23.

    Google Scholar 

  • Dijkstra, T. K., & Henseler, J. (2015b). Consistent partial least squares path modeling. MIS Quarterly, 39(2), 29–316.

    Google Scholar 

  • Drasgow, F. (1986). Polychoric and polyserial correlations. In S. Kotz & N. Johnson (Eds.), The encyclopedia of statistics (Vol. 7, pp. 68–74). New York: John Wiley.

    Google Scholar 

  • Evermann, J., & Tate, M. (2014). Comparing out-of-sample predictive ability of PLS, covariance, and regression models. In Proceedings of the 35th International Conference on Information Systems. Association for Information Systems (AIS).

    Google Scholar 

  • Henseler, J. (2021). Composite-based structural equation modeling: Analyzing latent and emergent variables. New York, NY: Guilford Press.

    Google Scholar 

  • Hui, B. S., & Wold, H. (1982). Consistency and consistency at large of partial least squares estimates. In K. G. Jöreskog & H. Wold (Eds.), Systems under indirect observation: Causality, structure, prediction Part II (pp. 119–130). Amsterdam: North-Holland.

    Google Scholar 

  • Hwang, H., & Takane, Y. (2004). Generalized structured component analysis. Psychometrika, 69(1), 81–99.

    Article  MathSciNet  MATH  Google Scholar 

  • Jakobowicz, E., & Derquenne, C. (2007). A modified PLS path modeling algorithm handling reflective categorical variables and a new model building strategy. Computational Statistics & Data Analysis, 51(8), 3666–3678.

    Article  MathSciNet  MATH  Google Scholar 

  • James, G., Witten, D., Hastie, T., & Tibshirani, R. (2021). An introduction to statistical learning. New York: Springer.

    Google Scholar 

  • Jöreskog, K. G. (1970). A general method for estimating a linear structural equation system. ETS Research Bulletin Series, 1970(2), i–41. https://doi.org/10.1002/j.2333-8504.1970.tb00783.x

    Article  Google Scholar 

  • Kettenring, J. R. (1971). Canonical analysis of several sets of variables. Biometrika, 58(3), 433–451.

    Article  MathSciNet  MATH  Google Scholar 

  • Lee, S. Y., & Poon, W. Y. (1986). Maximum likelihood estimation of polyserial correlations. Psychometrika, 51(1), 113–121.

    Article  MathSciNet  Google Scholar 

  • Lohmöller, J. B. (1989). Latent variable path modeling with partial least squares. Heidelberg: Physica-Verlag.

    Google Scholar 

  • Lyhagen, J., & Ornstein, P. (2023). Robust polychoric correlation. Communications in Statistics—Theory and Methods, 52(10), 3241–3261.

    Google Scholar 

  • Miltgen, C. L., Henseler, J., Gelhard, C., & Popovič, A. (2016). Introducing new products that affect consumer privacy: A mediation model. Journal of Business Research, 69(10), 4659–4666.

    Article  Google Scholar 

  • Noonan, R., & Wold, H. (1982). PLS path modeling with indirectly observed variables: A comparison of alternative estimates for the latent variable. In K. G. Jöreskog & H. Wold (Eds.), Systems under indirect observation: Causality, structure, prediction part II (pp. 75–94). Amsterdam: North-Holland.

    Google Scholar 

  • Pearson, K. (1900). Mathematical contributions to the theory of evolution. VII. on the correlation of characters not quantitatively measurable. Philosophical Transactions of the Royal Society of London Series A (Containing Papers of a Mathematical or Physical Character), 195, 1–47 & 405

    Google Scholar 

  • Pearson, K. (1913). On the measurement of the influence of “broad categories’’ on correlation. Biometrika, 9(1/2), 116–139.

    Article  Google Scholar 

  • Poon, W. Y., & Lee, S. Y. (1987). Maximum likelihood estimation of multivariate polyserial and polychoric correlation coefficients. Psychometrika, 52(3), 409–430.

    Article  MathSciNet  MATH  Google Scholar 

  • R Core Team (2021). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/

  • Rademaker, M. E., & Schuberth, F. (2020). cSEM: Composite-based structural equation modeling. https://m-e-rademaker.github.io/cSEM/ package version: 0.4.0.9000

  • Rademaker, M. E., Schuberth, F., & Dijkstra, T. K. (2019). Measurement error correlation within blocks of indicators in consistent partial least squares. Internet Research, 29(3), 448–463.

    Article  Google Scholar 

  • Rosseel, Y. (2012). Lavaan: An R package for structural equation modeling. Journal of Statistical Software, 48(2), 1–36.

    Article  Google Scholar 

  • Russolillo, G. (2012). Non-metric partial least squares. Electronic Journal of Statistics, 6, 1641–1669.

    Article  MathSciNet  MATH  Google Scholar 

  • Sarstedt, M., & Danks, N. P. (2022). Prediction in HRM research—A gap between rhetoric and reality. Human Resource Management Journal, 32, 485–513.

    Google Scholar 

  • Sarstedt, M., Henseler, J., & Ringle, C. M. (2011). Multigroup analysis in partial least squares (PLS) path modeling: Alternative methods and empirical results. Advances in Interational Marketing, 22, 195–218.

    Article  Google Scholar 

  • Sarstedt, M., Hair, J. F., & Ringle, C. M. (2023). “PLS-SEM: Indeed a silver bullet”—Retrospective observations and recent advances. Journal of Marketing Theory and Practice, 31(3), 261–275.

    Google Scholar 

  • Schamberger, T., Schuberth, F., & Henseler, J. (2023). Confirmatory composite analysis in human development research. International Journal of Behavioral Development, 47(1), 89–100.

    Google Scholar 

  • Schuberth, F. (2021). Confirmatory composite analysis using partial least squares: Setting the record straight. Review of Managerial Science, 15, 1311–1345. https://doi.org/10.1007/s11846-020-00405-0

  • Schuberth, F. (2023). The Henseler-Ogasawara specification of composites in structural equation modeling: A tutorial. Psychological Methods, 28(4), 843–859.

    Google Scholar 

  • Schuberth, F., & Cantaluppi, G. (2017). Ordinal consistent partial least squares. In L. Hengky & R. Noonan (Eds.), Partial least squares path modeling (pp. 109–150). Switzerland: Springer.

    Google Scholar 

  • Schuberth, F., Henseler, J., & Dijkstra, T. K. (2018). Partial least squares path modeling using ordinal categorical indicators. Quality & Quantity, 52(1), 9–35.

    Article  Google Scholar 

  • Schuberth, F., Rademaker, M. E., & Henseler, J. (2020). Estimating and assessing second-order constructs using PLS-PM: the case of composites of composites. Industrial Management & Data Systems, 120(12), 2211–2241.

    Article  Google Scholar 

  • Schuberth, F., Rademaker, M. E., & Henseler, J. (2023a). Assessing the overall fit of composite models estimated by partial least squares path modeling. European Journal of Marketing, 57(6), 1678–1702.

    Google Scholar 

  • Schuberth, F., Zaza, S., Henseler, J. (2023b). Partial least squares is an estimator for structural equation models: A comment on Evermann and Rönkkö. Communications of the Association for Information Systems, 52, 711–714.

    Google Scholar 

  • Shmueli, G. (2010). To explain or to predict? Statistical Science, 25(3), 289–310.

    Article  MathSciNet  MATH  Google Scholar 

  • Shmueli, G., Ray, S., Estrada, J. M. V., & Chatla, S. B. (2016). The elephant in the room: Predictive performance of PLS models. Journal of Business Research, 69(10), 4552–4564.

    Article  Google Scholar 

  • Shmueli, G., Sarstedt, M., Hair, J. F., Cheah, J. H., Ting, H., Vaithilingam, S., & Ringle, C. M. (2019). Predictive model assessment in PLS-SEM: Guidelines for using PLSpredict. European Journal of Marketing, 53(11), 2322–2347.

    Article  Google Scholar 

  • Tenenhaus, M., Vinzi, V. E., Chatelin, Y. M., & Lauro, C. (2005). PLS path modeling. Computational Statistics & Data Analysis, 48(1), 159–205.

    Article  MathSciNet  MATH  Google Scholar 

  • Venables, W. N., & Ripley, B. D. (2002). Modern applied statistics with S (4th ed.). New York: Springer.

    Google Scholar 

  • Vogt, W. (1993). Dictionary of statistics and methodology. London: Sage.

    Google Scholar 

  • Wold, H. (1966). Estimation of principal components and related models by iterative least squares. In P. Krishnaiah (Ed.), Multivariate Analysis (pp. 391–420). New York: Academic Press.

    Google Scholar 

  • Wold, H. (1974). Causal flows with latent variables: Partings of the ways in the light of NIPALS modelling. European Economic Review, 5(1), 67–86.

    Article  Google Scholar 

  • Wold, H. (1982). Soft modeling: The basic design and some extensions. In K. G. Jöreskog & H. Wold (Eds.), Systems under indirect observation: Causality, structure, prediction Part II (pp. 1–54). Amsterdam: North-Holland.

    Google Scholar 

  • Yu, X., Zaza, S., Schuberth, F., Henseler, J. (2021). Counterpoint: Representing forged concepts as emergent variables using composite-based structural equation modeling. ACM SIGMIS Database: the DATABASE for Advances in Information Systems, 52(SI), 114–130. https://doi.org/10.1145/3505639.3505647

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamara Schamberger .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (csv 68 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schamberger, T., Cantaluppi, G., Schuberth, F. (2023). Revisiting and Extending PLS for Ordinal Measurement and Prediction. In: Latan, H., Hair, Jr., J.F., Noonan, R. (eds) Partial Least Squares Path Modeling. Springer, Cham. https://doi.org/10.1007/978-3-031-37772-3_6

Download citation

Publish with us

Policies and ethics