Skip to main content

Software Packages for Partial Least Squares Structural Equation Modeling: An Updated Review

  • Chapter
  • First Online:
Partial Least Squares Path Modeling

Abstract

As a result of its ability to deal with situations that are difficult to address using other SEM methods, the partial least squares (PLS) approach to structural equation modeling (SEM) has attracted a lot of attention in recent years from applied researchers and practitioners in various fields. One reason for this growth in interest is represented by the many theoretical contributions emerging from the PLS-SEM research community, which have allowed us to deepen our knowledge of the method and extend its capabilities into new contexts. However, these contributions would have remained confined to academic journals if not for a parallel and similar development in the software packages available to implement these methodological innovations. Indeed, it is a well-known fact in the history of PLS-SEM that the lack of advanced and user-friendly software has been the main reason for the delay in the diffusion of this method in the applied sciences. Fortunately, we find ourselves nowadays in the opposite situation, as many high-quality packages for performing all varieties of PLS-SEM analyses have become available. In this chapter we present an updated review of the most popular commercial and open-source software packages for PLS-SEM. In particular, we discuss and compare ADANCO, SmartPLS, WarpPLS, XLSTAT-PLSPM, the plssem package for Stata, and the cSEM and SEMinR packages for R. Using a publicly available data set, we briefly illustrate the main features of each of these software packages and examine their corresponding strengths and weaknesses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.chapsvision.com/softwares-data/data-mining-machine-learning/.

  2. 2.

    https://www.stata.com.

  3. 3.

    https://www.r-project.org.

  4. 4.

    https://www.composite-modeling.com.

  5. 5.

    The path weighting scheme Lohmöller (1989) is not available because it requires a specific direction of causal structure and thus does not support non-recursive models and unanalyzed relationships [Henseler 2021, p. 91].

  6. 6.

    For a review of CCA see also Hubona et al. (2021).

  7. 7.

    https://scriptwarp.com/warppls/.

  8. 8.

    Factor-based methods, as implemented in WarpPLS, combine elements of PLS-SEM methods and covariance-based SEM and provide estimates of the composites and correlation-preserving factors in a path model. Differently from the PLSc approach, which is a parameter correction technique, factor-based methods estimate prototypical elements, such as factors, which are then used in the production of parameters, thus requiring no corrections. For more details see Kock (2019).

  9. 9.

    https://www.mathworks.com/products/matlab.html.

  10. 10.

    https://www.xlstat.com/en/.

  11. 11.

    We remind that, despite the name similarity, PLS regression must not be confused with PLS-SEM. They share a common origin, but they have different aims.

  12. 12.

    For more information about dynamic documents in Stata, execute the command help reporting.

  13. 13.

    As we already stated in the introduction, there are other R packages for PLS-SEM, but they are older and have been superseded by the more modern packages we discuss here.

  14. 14.

    https://cran.r-project.org/web/packages/cSEM/index.html.

  15. 15.

    https://m-e-rademaker.github.io/cSEM/.

  16. 16.

    A further useful resource is the personal webpage of one of the cSEM developers, http://florianschuberth.com/csem-2/ where one can find many tutorials regarding specific analyses available in the package.

  17. 17.

    For the complete list of fit measures returned by cSEM and the corresponding definitions, see the package webpage at https://m-e-rademaker.github.io/cSEM/articles/Using-assess.html and the references therein.

  18. 18.

    https://cran.r-project.org/web/packages/seminr.

  19. 19.

    https://github.com/sem-in-r/seminr.

References

  • Becker, J.-M., Rai, A., & Rigdon, E. (2013). Predictive validity and formative measurement in structural equation modeling: Embracing practical relevance. In Proceedings of the International Conference on Information Systems (ICIS).

    Google Scholar 

  • Becker, J.-M., & Ismail, I. R. (2016). Accounting for sampling weights in pls path modeling: Simulations and empirical examples. European Management Journal, 34(6), 606–617.

    Article  Google Scholar 

  • Becker, J.-M., Proksch, D., & Ringle, C. M. (2022). Revisiting Gaussian copulas to handle endogenous regressors. Journal of the Academy of Marketing Science, 50(1), 46–66.

    Article  Google Scholar 

  • Bentler, P. M. (2006). EQS 6 structural equations program manual (version 6). Encino, CA: Multivariate Software Inc.

    Google Scholar 

  • Bentler, P. M., & Bonett, D. G. (1980). Significance tests and goodness of fit in the analysis of covariance structures. Psychological Bulletin, 88(3), 588–606.

    Article  Google Scholar 

  • Cadogan, J. W., & Lee, N. (2023). A miracle of measurement or accidental constructivism? How PLS subverts the realist search for truth. European Journal of Marketing, 57(6), 1703–1724.

    Google Scholar 

  • Cantaluppi, G., & Boari, G. (2016). A Partial least squares algorithm handling ordinal variables. In H. Abdi, V. Esposito Vinzi, G. Russolillo, G. Saporta, & L. Trinchera (Eds.), The multiple facets of partial least squares and related methods. Springer.

    Google Scholar 

  • Cepeda, G., Nitzl, C., & Roldán, J. L. (2017). Mediation analyses in partial least squares structural equation modeling: Guidelines and empirical example. In H. Latan & R. Noonan (Eds.), Partial least squares path modeling: Basic concepts, methodological issues and applications (pp. 173–195). Springer.

    Google Scholar 

  • Chen, F., Bollen, K. A., Paxton, P., Curran, P. J., & Kirby, J. B. (2001). Improper solutions in structural equation models: causes, consequences, and strategies. Sociological Methods and Research, 29(4), 468–508.

    Article  MathSciNet  Google Scholar 

  • Chin, W. W. (2001). PLS-graph user’s guide version 3.0. C. T. Bauer College of Business, University of Houston, Houston, TX.

    Google Scholar 

  • Chin, W. W., & Dibbern, J. (2010). An introduction to a permutation based procedure for multi-group PLS analysis: Results of tests of differences on simulated data and a cross cultural analysis of the sourcing of information system services between Germany and the USA. In V. Esposito Vinzi, W. W. Chin, J. Henseler, & H. Wang (Eds.), Handbook of partial least squares: concepts, methods and applications (pp. 171–193). Springer.

    Google Scholar 

  • Chuah, F., Memon, M. A., Ramayah, T., Cheah, J.-H., Ting, H., & Huei Cham, T. (2021). PLS-SEM using R: An introduction to cSEM and SEMinR. Journal of Applied Structural Equation Modeling, 5(2), 1–35.

    Article  Google Scholar 

  • Cohen, J. (1988). Statistical power analysis for behavioral sciences (2nd ed.). Hillside, NJ: Erlbaum Associates.

    MATH  Google Scholar 

  • Coheris. (2021). Coheris SPAD. Suresnes, France: ChapsVision.

    Google Scholar 

  • Davison, A. C., & Hinkley, D. V. (1997). Bootstrap methods and their applications. Cambridge University Press.

    Google Scholar 

  • Deng, L., Yang, M., & Marcoulides, K. M. (2018). Structural equation modeling with many variables: A systematic review of issues and developments. Frontiers in Psychology, 9(580).

    Google Scholar 

  • Dijkstra, T. K., & Henseler, J. (2015a). Consistent and asymptotically normal PLS estimators for linear structural equations. Computational Statistics & Data Analysis,81, 10–23.

    Google Scholar 

  • Dijkstra, T. K., & Henseler, J. (2015b). Consistent partial least squares path modeling. MIS Quarterly,39(2), 297–316.

    Google Scholar 

  • Dijkstra, T. K., & Schermelleh-Engel, K. (2014). Consistent partial least squares for nonlinear structural equation models. Psychometrika, 79(4), 585–604.

    Article  MathSciNet  MATH  Google Scholar 

  • Dul, J. (2020). Conducting necessary condition analysis. Sage.

    Google Scholar 

  • Eberl, M. (2010). An application of PLS in multi-group analysis: The need for differentiated corporate-level marketing in the mobile communications industry. In V. Esposito Vinzi, W. W. Chin, J. Henseler, & H. Wang (Eds.), Handbook of partial least squares: concepts, methods and applications (pp. 487–514). Springer.

    Google Scholar 

  • Esposito Vinzi, V., Trinchera, L., & Amato, S. (2010). PLS path modeling: From foundations to recent developments and open issues for model assessment and improvement. In V. Esposito Vinzi, W. W. Chin, J. Henseler, & H. Wang (Eds.), Handbook of partial least squares: Concepts, methods and applications (pp. 47–82). Springer.

    Google Scholar 

  • Esposito Vinzi, V., Trinchera, L., Squillacciotti, S., & Tenenhaus, M. (2008). REBUS-PLS: A response-based procedure for detecting unit segments in PLS path modeling. Applied Stochastic Models in Business and Industry, 24, 439–458.

    Article  MathSciNet  MATH  Google Scholar 

  • Evermann, J., & Rönkkö, M. (2023). Recent developments in PLS. Communications of the Association for Information Systems, 52, 663–667.

    Google Scholar 

  • Fassott, G., Henseler, J., & Coelho, P. S. (2016). Testing moderating effects in PLS path models with composite variables. Industrial Management & Data System, 116(9), 1887–1900.

    Article  Google Scholar 

  • Fu, J.-R. (2006). VisualPLS—Partial least square (PLS) regression—An enhanced GUI for LVPLS (PLS 1.8 PC) version 1.04. National Kaohsiung University of Applied Sciences, Taiwan, ROC.

    Google Scholar 

  • Gudergan, S. P., Ringle, C. M., Wende, S., & Will, A. (2008). Confirmatory tetrad analysis in PLS path modeling. Journal of Business Research, 61(12), 1238–1249.

    Article  Google Scholar 

  • Hahn, C., Johnson, M. D., Herrmann, A., & Huber, F. (2002). Capturing customer heterogeneity using a finite mixture PLS approach. Schmalenbach Business Review, 54, 243–269.

    Article  Google Scholar 

  • Hair, J. F., Hult, G. T. M., Ringle, C. M., & Sarstedt, M. (2022). A primer on partial least squares structural equation modeling (PLS-SEM) (3rd ed.). Sage.

    Google Scholar 

  • Hair, J. F., Sarstedt, M., Ringle, C. M., & Gudergan, S. P. (2018). Advanced issues in partial least squares structural equation modeling. Sage.

    Google Scholar 

  • Hair, J. F., Hult, G. T. M., Ringle, C. M., Sarstedt, M., Danks, N. P., & Ray, S. (2021). Partial least squares structural equation modeling (PLS-SEM) using R. A Workbook: Springer.

    Book  Google Scholar 

  • Helm, S., Eggert, A., & Garnefeld, I. (2010). Modeling the impact of corporate reputation on customer satisfaction and loyalty using partial least squares. In V. Esposito Vinzi, W. W. Chin, J. Henseler, & H. Wang (Eds.), Handbook of partial least squares: concepts, methods and applications (pp. 515–534). Springer.

    Google Scholar 

  • Henseler, J. & Schuberth, F. (2023). Partial least squares as a tool for scientific inquiry: Comments on Cadogan and Lee. European Journal of Marketing, 57(6), 1737–1757.

    Google Scholar 

  • Henseler, J. (2021). Composite-based structural equation modeling: analyzing latent and emergent variables. Guilford Press.

    Google Scholar 

  • Henseler, J., & Dijkstra, T. K. (2021). ADANCO 2.3.1. Composite Modeling. Kleve, Germany.

    Google Scholar 

  • Henseler, J., & Schuberth, F. (2020). Using confirmatory composite analysis to assess emergent variables in business research. Journal of Business Research, 120(2020), 147–156.

    Article  Google Scholar 

  • Henseler, J., Ringle, C. M., & Sarstedt, M. (2015). A new criterion for assessing discriminant validity in variance-based structural equation modeling. Journal of the Academy of Marketing Science, 43(1), 115–135.

    Article  Google Scholar 

  • Henseler, J., Ringle, C. M., & Sarstedt, M. (2016). Testing measurement invariance of composites using partial least squares. International Marketing Review, 33(3), 405–431.

    Article  Google Scholar 

  • Hubona, G. S., Schuberth, F., & Henseler, J. (2021). A clarification of confirmatory composite analysis (CCA). International Journal of Information Management, 61 (102399).

    Google Scholar 

  • Hwang, H., & Takane, Y. (2014). Generalized structured component analysis: A component-based approach to structural equation modeling. Chapman & Hall/CRC.

    Google Scholar 

  • Hwang, H., Cho, G., & Choo, H. (2021). GSCA Pro version 1.1.

    Google Scholar 

  • Hwang, H., Takane, Y., & Kwanghee, J. (2017). Generalized structured component analysis with uniqueness terms for accommodating measurement error. Frontiers in Psychology, 8.

    Google Scholar 

  • Hwang, H., & Takane, Y. (2004). Generalized structured component analysis. Psychometrika, 69(1), 81–99.

    Article  MathSciNet  MATH  Google Scholar 

  • Jöreskog, K. G., & Sörbom, D. (2022). LISREL 12. Chapel Hill, NC: Scientific Software International Inc.

    Google Scholar 

  • Jöreskog, K. G., Olsson, U. H., & Wallentin, F. Y. (2016). Multivariate analysis with LISREL. Springer.

    Google Scholar 

  • Jöreskog, K. G. (1969). A general approach to confirmatory maximum likelihood factor analysis. Psychometrika, 34, 183–202.

    Article  Google Scholar 

  • Kettenring, J. R. (1971). Canonical analysis of several sets of variables. Biometrika, 58(3), 433–451.

    Article  MathSciNet  MATH  Google Scholar 

  • Klesel, M., Schuberth, F., Niehaves, B., & Henseler, J. (2022). Multigroup analysis in information systems research using PLS-PM: A systematic investigation of approaches. The Data Base for Advances in Information Systems, 53(3), 26–48.

    Article  Google Scholar 

  • Kock, N. (2022). WarpPLS user manual: Version 8.0. ScriptWarp Systems, Laredo, TX, USA.

    Google Scholar 

  • Kock, N. (2018). Single missing data imputation in PLS-based structural equation modeling. Journal of Modern Applied Statistical Methods, 17(1), 1–23.

    Article  Google Scholar 

  • Kock, N. (2019). From composites to factors: Bridging the gap between PLS and covariance-based structural equation modeling. Information Systems Journal, 29(3), 674–706.

    Article  Google Scholar 

  • Kock, N., & Hadaya, P. (2018). Minimum sample size estimation in PLS-SEM: The inverse square root and gamma-exponential methods. Information Systems Journal, 28(1), 227–261.

    Article  Google Scholar 

  • Latan, H. (2018). PLS path modeling in hospitality and tourism research: The golden age and days of future past. In F. Ali, S. M. Rasoolimanesh, & C. Cobanoglu (Eds.), Applying partial least squares in tourism and hospitality research (pp. 53–83). Emerald.

    Google Scholar 

  • Li, Y. (2005). PLS-GUI—Graphic user interface for partial least squares (PLS-PC 1.8)—Version 2.0.1 beta. University of South Carolina, Columbia, SC.

    Google Scholar 

  • Liengaard, B. D., Sharma, P. N., Hult, G. T. M., Jensen, M. B., Sarstedt, M., Hair, J. F., & Ringle, C. M. (2020). Prediction: Coveted, yet forsaken? Introducing a cross-validated predictive ability test in partial least squares path modeling. Decision Sciences, 52(2), 362–392.

    Article  Google Scholar 

  • Loehlin, J. C. & Beaujean, A. A. (2017). Latent variable models: An introduction to factor, path, and structural equation analysis (5th ed.). Routledge.

    Google Scholar 

  • Lohmöller, J.-B. (1989). Latent variable path modeling with partial least squares. Springer.

    Google Scholar 

  • Mehmetoglu, M., & Venturini, S. (2021). Structural equation modelling with partial least squares using Stata and R. CRC Press.

    Google Scholar 

  • Memon, M. A., Ramayah, T., Cheah, J.-H., Ting, H., Chuah, F., & Huei Cham, T. (2021). PLS-SEM statistical programs: A review. Journal of Applied Structural Equation Modeling, 5(1), 1–14.

    Article  Google Scholar 

  • Monecke, A., & Leisch, F. (2012). semPLS: Structural equation modeling using partial least squares. Journal of Statistical Software,48(3), 1–32.

    Google Scholar 

  • Noonan, R. (2017). Partial least squares: The gestation period. In H. Latan & R. Noonan (Eds.), Partial least squares path modeling: Basic concepts, methodological issues, and applications (pp. 3–18). Springer.

    Google Scholar 

  • R Core Team. (2022). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.

    Google Scholar 

  • Rademaker, M. E., & Schuberth, F. (2020). cSEM: Composite-based structural equation modeling. Package version: 0.5.0.

    Google Scholar 

  • Ray, S., Danks, N. P., & Calero Valdez, A. (2022). seminr: Building and estimating structural equation models. R package version, 2(3), 2.

    Google Scholar 

  • Ringle, C. M., Wende, S., & Becker, J.-M. (2022). SmartPLS 4. Oststeinbek: SmartPLS GmbH. https://www.smartpls.com.

  • Ringle, C. M., & Sarstedt, M. (2016). Gain more insight from your PLS-SEM results: The importance-performance map analysis. Industrial Management & Data Systems, 116(9), 1865–1886.

    Article  Google Scholar 

  • Roemer, E., Schuberth, F., & Henseler, J. (2021). HTMT2-an improved criterion for assessing discriminant validity in structural equation modeling. Industrial Management & Data Systems, 121(12), 2637–2650.

    Article  Google Scholar 

  • Rönkkö, M., Lee, N., Evermann, J., McIntosh, C. M., & Antonakis, J. (2023). Marketing or methodology? Exposing the fallacies of PLS with simple demonstrations. European Journal of Marketing, 57(6), 1597–1617.

    Google Scholar 

  • Rönkkö, M. (2021). matrixpls: Matrix-based partial least squares estimation. R package version, 1, 13.

    Google Scholar 

  • Rosseel, Y. (2012). lavaan: An R package for structural equation modeling. Journal of Statistical Software, 48(2), 1–36.

    Article  Google Scholar 

  • Russo, D., & Stol, K.-J. (2022). Don’t throw the baby out with the bathwater: Comments on “Recent developments in PLS”. Communications of the Association for Information Systems, 557–566.

    Google Scholar 

  • Sanchez, G., Trinchera, L., and Russolillo, G. (2017). plspm: Tools for partial least squares path modeling (PLS-PM). R package version 0.4.9.

    Google Scholar 

  • Sarstedt, M., Becker, J.-M., Ringle, C. M., & Schwaiger, M. (2011). Uncovering and treating unobserved heterogeneity with FIMIX-PLS: Which model selection criterion provides an appropriate number of segments? Schmalenbach Business Review, 63, 34–62.

    Article  Google Scholar 

  • Schamberger, T., Schuberth, F., & Henseler, J. (2023). Confirmatory composite analysis in human development research. International Journal of Behavioral Development, 47(1), 89–100.

    Google Scholar 

  • Schamberger, T., Schuberth, F., Henseler, J., & Dijkstra, T. K. (2020). Robust partial least squares path modeling. Behaviormetrika, 47(1), 307–334.

    Article  Google Scholar 

  • Schuberth, F., Henseler, J., & Dijkstra, T. K. (2018a). Confirmatory composite analysis. Frontiers in Psychology, 9.

    Google Scholar 

  • Schuberth, F., Henseler, J., & Dijkstra, T. K. (2018b). Partial least squares path modeling using ordinal categorical indicators. Quality & Quantity,52(1), 9–35.

    Google Scholar 

  • Schuberth, F., Rademaker, M. E., & Henseler, J. (2023). Assessing the overall fit of composite models estimated by partial least squares path modeling. European Journal of Marketing, 57(6), 1678–1702.

    Google Scholar 

  • Schuberth, F., Zaza, S., & Henseler, J. (2021). Partial least squares is an estimator for structural equation models: A comment on Evermann and Rönkkö (2021). Communications of the Association for Information Systems, 52, 711–729.

    Google Scholar 

  • Schuberth, F., Rademaker, M. E., & Henseler, J. (2020). Estimating and assessing second-order constructs using PLS-PM: The case of composites of composites. Industrial Management & Data Systems, 120(12), 2211–2241.

    Article  Google Scholar 

  • Schwaiger, M. (2004). Components and parameters of corporate reputation: An empirical study. Schmalenbach Business Review, 56(1), 46–71.

    Article  Google Scholar 

  • Shmueli, G., Ray, S., Velasquez Estrada, J. M., & Chatla, S. B. (2016). The elephant in the room: Evaluating the predictive performance of PLS models. Journal of Business Research, 69(10), 4552–4564.

    Article  Google Scholar 

  • Shmueli, G., Sarstedt, M., Hair, J. F., Cheah, J., Ting, H., Vaithilingam, S., & Ringle, C. M. (2019). Predictive model assessment in PLS-SEM: Guidelines for using PLSpredict. European Journal of Marketing, 53(11), 2322–2347.

    Article  Google Scholar 

  • Spiller, S. A., Fitzsimons, G. J., Lynch, J. G., & Mcclelland, G. H. (2013). Spotlights, floodlights, and the magic number zero: Simple effects tests in moderated regression. Journal of Marketing Research, 50(2), 277–288.

    Article  Google Scholar 

  • StataCorp,. (2021). Stata statistical software: Release 17. College Station, TX: StataCorp LLC.

    Google Scholar 

  • Stodden, V., Leisch, F., & Peng, R. D. (eds.). (2014). Implementing reproducible research. CRC Press.

    Google Scholar 

  • Temme, D., Kreis, H., & Hildebrandt, L. (2010). A comparison of current PLS path modeling software: Features, ease-of-use, and performance. In V. Esposito Vinzi, W. W. Chin, J. Henseler, & H. Wang (Eds.), Handbook of partial least squares: Concepts, methods and applications (pp. 737–756). Springer.

    Google Scholar 

  • Tenenhaus, A., & Tenenhaus, M. (2011). Regularized generalized canonical correlation analysis. Psychometrika, 76, 257–284.

    Article  MathSciNet  MATH  Google Scholar 

  • Tenenhaus, M., Esposito Vinzi, V., Chatelin, Y.-M., & Lauro, C. (2005). PLS path modeling. Computational Statistics & Data Analysis, 48, 159–205.

    Article  MathSciNet  MATH  Google Scholar 

  • Venturini, S., & Mehmetoglu, M. (2019). plssem: A Stata package for structural equation modeling with partial least squares. Journal of Statistical Software, 88(8), 1–35.

    Article  Google Scholar 

  • Whittaker, T. A., & Schumacker, R. E. (2022). A beginner’s guide to structural equation modeling (5th ed.). Routledge.

    Google Scholar 

  • Wold, H. O. A. (1982). Soft modeling: The basic design and some extensions. In K. G. Jöreskog & H. O. A. Wold (Eds.), Systems under indirect observations, Part II (pp. 1–54). North-Holland.

    Google Scholar 

  • Wold, H. (1989). Introduction to the second generation of multivariate analysis. In H. Wold (Ed.), Theoretical empiricism: A general rationale for scientific model-building (pp. VII–XL). Paragon House.

    Google Scholar 

  • Xie, Y., Allaire, J. J., & Grolemund, G. (2019). R Markdown. The Definitive Guide. The R Series: CRC Press.

    Google Scholar 

  • Yu, X., Zaza, S., Schuberth, F., & Henseler, J. (2021). Counterpoint: Representing forged concepts as emergent variables using composite-based structural equation modeling. The DATA BASE for Advances in Information Systems, 52, 114–130.

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Jörg Henseler (University of Twente, Netherlands) and the sales teams of SmartPLS, WarpPLS and XLSTAT for their support and collaboration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Venturini .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (zip 658 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Venturini, S., Mehmetoglu, M., Latan, H. (2023). Software Packages for Partial Least Squares Structural Equation Modeling: An Updated Review. In: Latan, H., Hair, Jr., J.F., Noonan, R. (eds) Partial Least Squares Path Modeling. Springer, Cham. https://doi.org/10.1007/978-3-031-37772-3_5

Download citation

Publish with us

Policies and ethics