Skip to main content

Comparison of Attention Models and Post-hoc Explanation Methods for Embryo Stage Identification: A Case Study

  • Conference paper
  • First Online:
Pattern Recognition, Computer Vision, and Image Processing. ICPR 2022 International Workshops and Challenges (ICPR 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13645))

Included in the following conference series:

  • 343 Accesses

Abstract

An important limitation to the development of AI-based solutions for In Vitro Fertilization (IVF) is the black-box nature of most state-of-the-art models, due to the complexity of deep learning architectures, which raises potential bias and fairness issues. The need for interpretable AI has risen not only in the IVF field but also in the deep learning community in general. This has started a trend in literature where authors focus on designing objective metrics to evaluate generic explanation methods. In this paper, we study the behavior of recently proposed objective faithfulness metrics applied to the problem of embryo stage identification. We benchmark attention models and post-hoc methods using metrics and further show empirically that (1) the metrics produce low overall agreement on the model ranking and (2) depending on the metric approach, either post-hoc methods or attention models are favored. We conclude with general remarks about the difficulty of defining faithfulness and the necessity of understanding its relationship with the type of approach that is favored.

Supported by Nantes Excellence Trajectory (NExT).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that we did not use the more recent UMAP algorithm [24] because the only UMAP implementation available requires the custom distance function to be compiled with Numba, which is currently not possible with the Kendall’s tau implementation of the Scikit-Learn python package [25].

References

  1. Afnan, M., et al.: Interpretable, not black-box, artificial intelligence should be used for embryo selection. Human Reprod. Open 2021(4), hoab040 (2021). https://doi.org/10.1093/hropen/hoab040

  2. Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: a next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery (KDD’19), pp. 2623–2631. Association for Computing Machinery, New York (2019). https://doi.org/10.1145/3292500.3330701

  3. Alqaraawi, A., Schuessler, M., Weiß, P., Costanza, E., Berthouze, N.: Evaluating Saliency Map Explanations for Convolutional Neural Networks: A User Study (IUI ’20), pp. 275–285. Association for Computing Machinery, New York (2020). https://doi.org/10.1145/3377325.3377519

  4. Bastings, J., Filippova, K.: The elephant in the interpretability room: why use attention as explanation when we have saliency methods? In: Proceedings of the Third BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks for NLP, pp. 149–155. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.blackboxnlp-1.14

  5. Chattopadhay, A., Sarkar, A., Howlader, P., Balasubramanian, V.N.: Grad-cam++: generalized gradient-based visual explanations for deep convolutional networks. In: 2018 IEEE Winter Conference on Applications of Computer Vision (WACV) (2018). https://doi.org/10.1109/wacv.2018.00097

  6. Chen, C., Li, O., Barnett, A., Su, J., Rudin, C.: This looks like that: deep learning for interpretable image recognition. In: NeurIPS (2019)

    Google Scholar 

  7. Ciray, H.N., et al.: Proposed guidelines on the nomenclature and annotation of dynamic human embryo monitoring by a time-lapse user group. Human Reprod. 29(12), 2650–2660 (2014). https://doi.org/10.1093/humrep/deu278

  8. Collobert, R., Kavukcuoglu, K., Farabet, C.: Torch7: a matlab-like environment for machine learning. In: BigLearn, NIPS Workshop (2011)

    Google Scholar 

  9. Desai, S., Ramaswamy, H.G.: Ablation-cam: Visual explanations for deep convolutional network via gradient-free localization. In: 2020 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 972–980 (2020). https://doi.org/10.1109/WACV45572.2020.9093360

  10. Dosovitskiy, A., et al.: An image is worth 16x16 words: Transformers for image recognition at scale. In: International Conference on Learning Representations (2021). https://openreview.net/forum?id=YicbFdNTTy

  11. Fukui, H., Hirakawa, T., Yamashita, T., Fujiyoshi, H.: Attention branch network: learning of attention mechanism for visual explanation. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 10697–10706 (2019). https://doi.org/10.1109/CVPR.2019.01096

  12. Gomez, T., et al.: A time-lapse embryo dataset for morphokinetic parameter prediction. Data Brief 42 (2022). https://doi.org/10.1016/j.dib.2022.108258

  13. Gomez, T., Fréour, T., Mouchère, H.: Metrics for saliency map evaluation of deep learning explanation methods. In: International Conference on Pattern Recognition and Artificial Intelligence (2022). https://doi.org/10.48550/ARXIV.2201.13291

  14. Gomez, T., Ling, S., Fréour, T., Mouchère, H.: Br-npa: a non-parametric high-resolution attention model to improve the interpretability of attention (2021). https://doi.org/10.48550/ARXIV.2106.02566

  15. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016)

    Google Scholar 

  16. Hu, T., Qi, H.: See better before looking closer: Weakly supervised data augmentation network for fine-grained visual classification. arXiv preprint arXiv:1901.09891 (2019)

  17. Huang, Z., Li, Y.: Interpretable and accurate fine-grained recognition via region grouping. In: The IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2020)

    Google Scholar 

  18. Inhorn, M.C., Patrizio, P.: Infertility around the globe: new thinking on gender, reproductive technologies and global movements in the 21st century. Human Reprod. Update 21(4), 411–426 (2015). https://doi.org/10.1093/humupd/dmv016

  19. Jung, H., Oh, Y.: Towards better explanations of class activation mapping. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 1336–1344 (2021)

    Google Scholar 

  20. Kendall, M.G.: The treatment of ties in ranking problems. Biometrika 33(3), 239–251 (1945). http://www.jstor.org/stable/2332303

  21. Khan, A., Gould, S., Salzmann, M.: Deep convolutional neural networks for human embryonic cell counting. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9913, pp. 339–348. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46604-0_25

    Chapter  Google Scholar 

  22. Lin, T.Y., RoyChowdhury, A., Maji, S.: Bilinear CNN models for fine-grained visual recognition. In: Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV) (ICCV ’15), pp. 1449–1457. IEEE Computer Society, Washington, DC (2015). https://doi.org/10.1109/ICCV.2015.170

  23. van der Maaten, L., Hinton, G.: Visualizing data using t-sne. J. Mach. Learn. Res. 9(86), 2579–2605 (2008). http://jmlr.org/papers/v9/vandermaaten08a.html

  24. McInnes, L., Healy, J., Saul, N., GroSSberger, L.: Umap: Uniform manifold approximation and projection. J. Open Source Softw. 3(29), 861 (2018). https://doi.org/10.21105/joss.00861

  25. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    Google Scholar 

  26. Petsiuk, V., Das, A., Saenko, K.: Rise: randomized input sampling for explanation of black-box models. In: BMVC (2018)

    Google Scholar 

  27. Pribenszky, C., Nilselid, A.M., Montag, M.: Time-lapse culture with morphokinetic embryo selection improves pregnancy and live birth chances and reduces early pregnancy loss: a meta-analysis. Reprod. BioMed. Online 35, 511–520 (2017)

    Article  Google Scholar 

  28. Rad, R.M., Saeedi, P., Au, J., Havelock, J.: Blastomere cell counting and centroid localization in microscopic images of human embryo. In: 2018 IEEE 20th International Workshop on Multimedia Signal Processing (MMSP), pp. 1–6 (2018). https://doi.org/10.1109/MMSP.2018.8547107

  29. Sawada, Y., et al.: Artificial intelligence with attention branch network and deep learning can predict live births by using time-lapse imaging of embryos after in vitro fertilisation. Reprod. BioMed. Online (2021). https://doi.org/10.1016/j.rbmo.2021.05.002

  30. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-CAM: visual explanations from deep networks via gradient-based localization. Int. J. Comput. Vis. 128(2), 336–359 (2019). https://doi.org/10.1007/s11263-019-01228-7

    Article  Google Scholar 

  31. Tsai, C.H., Brusilovsky, P.: Evaluating Visual Explanations for Similarity-Based Recommendations: User Perception and Performance, pp. 22–30. Association for Computing Machinery, New York (2019)

    Google Scholar 

  32. van der Waa, J., Nieuwburg, E., Cremers, A., Neerincx, M.: Evaluating XAI: a comparison of rule-based and example-based explanations. Artif. Intell. 291, 103404 (2021). https://doi.org/10.1016/j.artint.2020.103404

    Article  MathSciNet  MATH  Google Scholar 

  33. Wang, H., et al.: Score-cam: score-weighted visual explanations for convolutional neural networks. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 111–119. IEEE Computer Society, Los Alamitos (2020). https://doi.org/10.1109/CVPRW50498.2020.00020

  34. Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A.: Learning deep features for discriminative localization. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016). https://doi.org/10.1109/CVPR.2016.319

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tristan Gomez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gomez, T., Fréour, T., Mouchère, H. (2023). Comparison of Attention Models and Post-hoc Explanation Methods for Embryo Stage Identification: A Case Study. In: Rousseau, JJ., Kapralos, B. (eds) Pattern Recognition, Computer Vision, and Image Processing. ICPR 2022 International Workshops and Challenges. ICPR 2022. Lecture Notes in Computer Science, vol 13645. Springer, Cham. https://doi.org/10.1007/978-3-031-37731-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-37731-0_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-37730-3

  • Online ISBN: 978-3-031-37731-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics