Skip to main content

Translational Efforts in Precision Medicine to Address Disparities

  • Chapter
  • First Online:
Cancer Health Disparities

Abstract

Translational research plays an important role in cancer health disparities by examining the biological pathways and mechanisms that are important to cancer risk, response to treatment, and cancer-related outcomes among disparity populations. This chapter reviews emerging priorities in basic science research in cancer health disparities and discusses the importance of increasing the diversity of ongoing initiatives and programs that are focused on increasing the precision of cancer care. Future opportunities and priorities for improving cancer care through translational research, precision medicine, and data sciences are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dankwa-Mullan I, Rhee KB, Stoff DM, et al. Moving toward paradigm-shifting research in health disparities through translational, transformational, and transdisciplinary approaches. Am J Public Health. 2010;100(Suppl 1):S19–24.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Sankare IC, Bross R, Brown AF, et al. Strategies to build trust and recruit African American and Latino community residents for health research: a cohort study. Clin Transl Sci. 2015;8:412–20.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Cobain EF, Milliron KJ, Merajver SD. Updates on breast cancer genetics: clinical implications of detecting syndromes of inherited increased susceptibility to breast cancer. Semin Oncol. 2016;43:528–35.

    Article  PubMed  Google Scholar 

  4. Barbosa K, Li S, Adams PD, et al. The role of TP53 in acute myeloid leukemia: challenges and opportunities. Genes Chromosomes Cancer. 2019;58:875–88.

    Article  CAS  PubMed  Google Scholar 

  5. Chatrath A, Ratan A, Dutta A. Germline variants that affect tumor progression. Trends Genet. 2021;37:433–43.

    Article  CAS  PubMed  Google Scholar 

  6. Liu M, Jiang Y, Wedow R, et al. Association studies of up to 1.2 million individuals yield new insights into the genetic etiology of tobacco and alcohol use. Nat Genet. 2019;51:237–44.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Christophersen MK, Hogdall C, Hogdall E. The prospect of discovering new biomarkers for ovarian cancer based on current knowledge of susceptibility loci and genetic variation (review). Int J Mol Med. 2019;44:1599–608.

    CAS  PubMed  Google Scholar 

  8. Montazeri Z, Li X, Nyiraneza C, et al. Systematic meta-analyses, field synopsis and global assessment of the evidence of genetic association studies in colorectal cancer. Gut. 2020;69:1460–71.

    Article  CAS  PubMed  Google Scholar 

  9. Yin J, Liu H, Liu Z, et al. Pathway-analysis of published genome-wide association studies of lung cancer: a potential role for the CYP4F3 locus. Mol Carcinog. 2017;56:1663–72.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Haiman CA, Hsu C, de Bakker PI, et al. Comprehensive association testing of common genetic variation in DNA repair pathway genes in relationship with breast cancer risk in multiple populations. Hum Mol Genet. 2008;17:825–34.

    Article  CAS  PubMed  Google Scholar 

  11. Hamann U. Hereditary breast cancer: high risk genes, genetic testing and clinical implications. Clin Lab. 2000;46:447–61.

    CAS  PubMed  Google Scholar 

  12. Konstantinopoulos PA, Norquist B, Lacchetti C, et al. Germline and somatic tumor testing in epithelial ovarian cancer: ASCO guideline. J Clin Oncol. 2020;38:1222–45.

    Article  PubMed  Google Scholar 

  13. Hereditary Cancer Syndromes and Risk Assessment: ACOG COMMITTEE OPINION, Number 793. Obstet Gynecol. 2019;134:e143–9.

    Google Scholar 

  14. Muller C, Lee SM, Barge W, et al. Low referral rate for genetic testing in racially and ethnically diverse patients despite universal colorectal cancer screening. Clin Gastroenterol Hepatol. 2018;16:1911–1918e2.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Peterson JM, Pepin A, Thomas R, et al. Racial disparities in breast cancer hereditary risk assessment referrals. J Genet Couns. 2020;29:587–93.

    Article  PubMed  Google Scholar 

  16. Garland V, Cioffi J, Kirelik D, et al. African-Americans are less frequently assessed for hereditary colon cancer. J Natl Med Assoc. 2021;113:336–41.

    PubMed  Google Scholar 

  17. Ademuyiwa FO, Salyer P, Ma Y, et al. Assessing the effectiveness of the National Comprehensive Cancer Network genetic testing guidelines in identifying African American breast cancer patients with deleterious genetic mutations. Breast Cancer Res Treat. 2019;178:151–9.

    Article  PubMed  Google Scholar 

  18. Olopade OI, Fackenthal JD, Dunston G, et al. Breast cancer genetics in African Americans. Cancer. 2003;97:236–45.

    Article  CAS  PubMed  Google Scholar 

  19. Ndugga-Kabuye MK, Issaka RB. Inequities in multi-gene hereditary cancer testing: lower diagnostic yield and higher VUS rate in individuals who identify as Hispanic, African or Asian and Pacific islander as compared to European. Familial Cancer. 2019;18:465–9.

    Article  PubMed Central  PubMed  Google Scholar 

  20. Bishop MR, Omeler-Fenaud SM, Huskey ALW, et al. Gene panel screening for insight towards breast cancer susceptibility in different ethnicities. PLoS One. 2020;15:e0238295.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Roberts ME, Susswein LR, Janice Cheng W, et al. Ancestry-specific hereditary cancer panel yields: moving toward more personalized risk assessment. J Genet Couns. 2020;29:598–606.

    Article  PubMed  Google Scholar 

  22. Martin AR, Kanai M, Kamatani Y, et al. Clinical use of current polygenic risk scores may exacerbate health disparities. Nat Genet. 2019;51:584–91.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Thomas M, Sakoda LC, Hoffmeister M, et al. Genome-wide modeling of polygenic risk score in colorectal cancer risk. Am J Hum Genet. 2020;107:432–44.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Dixon P, Keeney E, Taylor JC, et al. Can polygenic risk scores contribute to cost-effective cancer screening? A systematic review. Genet Med. 2022;24(8):1604–17.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Yanes T, Young MA, Meiser B, et al. Clinical applications of polygenic breast cancer risk: a critical review and perspectives of an emerging field. Breast Cancer Res. 2020;22:21.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Heckler MM. Secretary Heckler: health-care needs and political needs must mix. Hosp Manage. 1983;Q:2–4.

    Google Scholar 

  27. Centers for Disease Control. Report of the secretary’s task force on black and minority health. MMWR Morb Mortal Wkly Rep. 1986;35:109–12.

    Google Scholar 

  28. Nickens H. Report of the Secretary’s Task Force on Black and Minority Health: a summary and a presentation of health data with regard to blacks. J Natl Med Assoc. 1986;78:577–80.

    CAS  PubMed Central  PubMed  Google Scholar 

  29. DuBois WE. The health and physique of the Negro American. 1906. Am J Public Health. 2003;93:272–6.

    Article  PubMed Central  PubMed  Google Scholar 

  30. Sprague Martinez L, Freeman ER, Winkfield KM. Perceptions of cancer care and clinical trials in the black community: implications for care coordination between oncology and primary care teams. Oncologist. 2017;22:1094–101.

    Article  PubMed Central  PubMed  Google Scholar 

  31. Fam E, Ferrante JM. Lessons learned recruiting minority participants for research in urban community health centers. J Natl Med Assoc. 2018;110:44–52.

    PubMed  Google Scholar 

  32. Jaiswal J. Whose responsibility is it to dismantle medical mistrust? Future directions for researchers and health care providers. Behav Med. 2019;45:188–96.

    Article  PubMed  Google Scholar 

  33. DeSantis CE, Ma J, Gaudet MM, et al. Breast cancer statistics, 2019. CA Cancer J Clin. 2019;69:438–51.

    Article  PubMed  Google Scholar 

  34. DeSantis CE, Miller KD, Goding Sauer A, et al. Cancer statistics for African Americans, 2019. CA Cancer J Clin. 2019;69:211–33.

    Article  PubMed  Google Scholar 

  35. Mitchell E, Alese OB, Yates C, et al. Cancer healthcare disparities among African Americans in the United States. J Natl Med Assoc. 2022;114:236.

    PubMed  Google Scholar 

  36. Martini R, Newman L, Davis M. Breast cancer disparities in outcomes; unmasking biological determinants associated with racial and genetic diversity. Clin Exp Metastasis. 2022;39:7–14.

    Article  CAS  PubMed  Google Scholar 

  37. Lord BD, Martini RN, Davis MB. Understanding how genetic ancestry may influence cancer development. Trends Cancer. 2022;8:276–9.

    Article  CAS  PubMed  Google Scholar 

  38. Leong SP, Witz IP, Sagi-Assif O, et al. Cancer microenvironment and genomics: evolution in process. Clin Exp Metastasis. 2022;39:85–99.

    Article  PubMed  Google Scholar 

  39. Davis M, Martini R, Newman L, et al. Identification of distinct heterogenic subtypes and molecular signatures associated with African ancestry in triple negative breast cancer using quantified genetic ancestry models in admixed race populations. Cancers (Basel). 2020;12:1220.

    Article  CAS  PubMed  Google Scholar 

  40. Davis MB. Genomics and cancer disparities: the justice and power of inclusion. Cancer Discov. 2021;11:805–9.

    Article  CAS  PubMed  Google Scholar 

  41. Halbert CH, Allen CG. Basic behavioral science research priorities in minority health and health disparities. Transl Behav Med. 2021;11:2033–42.

    Article  PubMed Central  PubMed  Google Scholar 

  42. Chen CH, Lu YS, Cheng AL, et al. Disparity in tumor immune microenvironment of breast cancer and prognostic impact: Asian versus Western populations. Oncologist. 2020;25:e16–23.

    Article  CAS  PubMed  Google Scholar 

  43. Curran T, Sun Z, Gerry B, et al. Differential immune signatures in the tumor microenvironment are associated with colon cancer racial disparities. Cancer Med. 2021;10:1805–14.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Deshmukh SK, Srivastava SK, Tyagi N, et al. Emerging evidence for the role of differential tumor microenvironment in breast cancer racial disparity: a closer look at the surroundings. Carcinogenesis. 2017;38:757–65.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Kim G, Pastoriza JM, Condeelis JS, et al. The contribution of race to breast tumor microenvironment composition and disease progression. Front Oncol. 2020;10:1022.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Mitchell KA, Zingone A, Toulabi L, et al. Comparative transcriptome profiling reveals coding and noncoding RNA differences in NSCLC from African Americans and European Americans. Clin Cancer Res. 2017;23:7412–25.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. O’Meara T, Safonov A, Casadevall D, et al. Immune microenvironment of triple-negative breast cancer in African-American and Caucasian women. Breast Cancer Res Treat. 2019;175:247–59.

    Article  PubMed Central  PubMed  Google Scholar 

  48. Powell IJ, Chinni SR, Reddy SS, et al. Pro-inflammatory cytokines and chemokines initiate multiple prostate cancer biologic pathways of cellular proliferation, heterogeneity and metastasis in a racially diverse population and underlie the genetic/biologic mechanism of racial disparity: update. Urol Oncol. 2021;39:34–40.

    Article  CAS  PubMed  Google Scholar 

  49. Chand GB, Dwyer DB, Erus G, et al. Two distinct neuroanatomical subtypes of schizophrenia revealed using machine learning. Brain. 2020;143:1027–38.

    Article  PubMed Central  PubMed  Google Scholar 

  50. Coram MA, Fang H, Candille SI, et al. Leveraging multi-ethnic evidence for risk assessment of quantitative traits in minority populations. Am J Hum Genet. 2017;101:218–26.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Hobbs BD, Putman RK, Araki T, et al. Overlap of genetic risk between interstitial lung abnormalities and idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2019;200:1402–13.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Kaiser P, Peralta CA, Kronmal R, et al. Racial/ethnic heterogeneity in associations of blood pressure and incident cardiovascular disease by functional status in a prospective cohort: the Multi-Ethnic Study of Atherosclerosis. BMJ Open. 2018;8:e017746.

    Article  PubMed Central  PubMed  Google Scholar 

  53. Raffield LM, Iyengar AK, Wang B, et al. Allelic heterogeneity at the CRP locus identified by whole-genome sequencing in multi-ancestry cohorts. Am J Hum Genet. 2020;106:112–20.

    Article  CAS  PubMed  Google Scholar 

  54. van der Wouden CH, Cambon-Thomsen A, Cecchin E, et al. Implementing pharmacogenomics in Europe: design and implementation strategy of the ubiquitous pharmacogenomics consortium. Clin Pharmacol Ther. 2017;101:341–58.

    Article  PubMed  Google Scholar 

  55. Wojcik GL, Graff M, Nishimura KK, et al. Genetic analyses of diverse populations improves discovery for complex traits. Nature. 2019;570:514–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Zhao X, Qiao D, Yang C, et al. Whole genome sequence analysis of pulmonary function and COPD in 19,996 multi-ethnic participants. Nat Commun. 2020;11:5182.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Darst BF, Wan P, Sheng X, et al. A germline variant at 8q24 contributes to familial clustering of prostate cancer in men of African ancestry. Eur Urol. 2020;78:316–20.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Erkizan HV, Sukhadia S, Natarajan TG, et al. Exome sequencing identifies novel somatic variants in African American esophageal squamous cell carcinoma. Sci Rep. 2021;11:14814.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Han Y, Rand KA, Hazelett DJ, et al. Prostate cancer susceptibility in men of African ancestry at 8q24. J Natl Cancer Inst. 2016;108:djv431.

    Article  PubMed Central  PubMed  Google Scholar 

  60. Chen H, Liu W, Roberts W, et al. 8q24 allelic imbalance and MYC gene copy number in primary prostate cancer. Prostate Cancer Prostatic Dis. 2010;13:238–43.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Hooker S, Hernandez W, Chen H, et al. Replication of prostate cancer risk loci on 8q24, 11q13, 17q12, 19q33, and Xp11 in African Americans. Prostate. 2010;70:270–5.

    Article  CAS  PubMed  Google Scholar 

  62. Okah E, Thomas J, Westby A, et al. Colorblind racial ideology and physician use of race in medical decision-making. J Racial Ethn Health Disparities. 2021;9:2019.

    Article  PubMed  Google Scholar 

  63. Hunt LM, Truesdell ND, Kreiner MJ. Genes, race, and culture in clinical care: racial profiling in the management of chronic illness. Med Anthropol Q. 2013;27:253–71.

    Article  PubMed Central  PubMed  Google Scholar 

  64. Egalite N, Ozdemir V, Godard B. Pharmacogenomics research involving racial classification: qualitative research findings on researchers’ views, perceptions and attitudes towards socioethical responsibilities. Pharmacogenomics. 2007;8:1115–26.

    Article  PubMed  Google Scholar 

  65. Martini R, Newman L, Davis M. Breast cancer disparities in outcomes; unmasking biological determinants associated with racial and genetic diversity. Clin Exp Metastasis. 2021;39:7.

    Article  PubMed Central  PubMed  Google Scholar 

  66. Apprey V, Wang S, Tang W, et al. Association of genetic ancestry with DNA methylation changes in prostate cancer disparity. Anticancer Res. 2019;39:5861–6.

    Article  CAS  PubMed  Google Scholar 

  67. Yao S, Hong CC, Ruiz-Narvaez EA, et al. Genetic ancestry and population differences in levels of inflammatory cytokines in women: role for evolutionary selection and environmental factors. PLoS Genet. 2018;14:e1007368.

    Article  PubMed Central  PubMed  Google Scholar 

  68. Ramakodi MP, Devarajan K, Blackman E, et al. Integrative genomic analysis identifies ancestry-related expression quantitative trait loci on DNA polymerase beta and supports the association of genetic ancestry with survival disparities in head and neck squamous cell carcinoma. Cancer. 2017;123:849–60.

    Article  CAS  PubMed  Google Scholar 

  69. Evans DS, Avery CL, Nalls MA, et al. Fine-mapping, novel loci identification, and SNP association transferability in a genome-wide association study of QRS duration in African Americans. Hum Mol Genet. 2016;25:4350–68.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Henderson BE, Lee NH, Seewaldt V, et al. The influence of race and ethnicity on the biology of cancer. Nat Rev Cancer. 2012;12:648–53.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Robine N, Varmus H. New York’s Polyethnic-1000: a regional initiative to understand how diverse ancestries influence the risk, progression, and treatment of cancers. Trends Cancer. 2022;8(4):269–272. https://doi.org/10.1016/j.trecan.2021.11.005. Epub 2021 Dec 9. PMID: 34895873.

  72. Martini R, Chen Y, Jenkins BD, Elhussin IA, Cheng E, Hoda SA, Ginter PS, Hanover J, Zeidan RB, Oppong JK, Adjei EK, Jibril A, Chitale D, Bensenhaver JM, Awuah B, Bekele M, Abebe E, Kyei I, Aitpillah FS, Adinku MO, Ankomah K, Osei-Bonsu EB, Nathansan SD, Jackson L, Jiagge E, Petersen LF, Proctor E, Nikolinakos P, Gyan KK, Yates C, Kittles R, Newman LA, Davis MB. Investigation of triple-negative breast cancer risk alleles in an International African-enriched cohort. Sci Rep. 2021;11(1):9247. https://doi.org/10.1038/s41598-021-88613-w. PMID: 33927264; PMCID: PMC8085076.

  73. White JA, Kaninjing ET, Adeniji KA, Jibrin P, Obafunwa JO, Ogo CN, Mohammed F, Popoola A, Fatiregun OA, Oluwole OP, Karanam B, Elhussin I, Ambs S, Tang W, Davis M, Polak P, Campbell MJ, Brignole KR, Rotimi SO, Dean-Colomb W, Odedina FT, Martin DN, Yates C. Whole-exome sequencing of nigerian prostate tumors from the prostate cancer transatlantic consortium (CaPTC) reveals DNA repair genes associated with african ancestry. Cancer Res Commun. 2022;2(9):1005–1016. https://doi.org/10.1158/2767-9764.CRC-22-0136. PMID: 36922933; PMCID: PMC10010347.

  74. Kaur P, Porras TB, Ring A, et al. Comparison of TCGA and GENIE genomic datasets for the detection of clinically actionable alterations in breast cancer. Sci Rep. 2019;9:1482.

    Article  PubMed Central  PubMed  Google Scholar 

  75. Lewis KL, Heidlebaugh AR, Epps S, et al. Knowledge, motivations, expectations, and traits of an African, African-American, and Afro-Caribbean sequencing cohort and comparisons to the original ClinSeq((R)) cohort. Genet Med. 2019;21:1355–62.

    Article  PubMed  Google Scholar 

  76. Spratt DE, Chan T, Waldron L, et al. Racial/ethnic disparities in genomic sequencing. JAMA Oncol. 2016;2:1070–4.

    Article  PubMed Central  PubMed  Google Scholar 

  77. Fang H, Hui Q, Lynch J, et al. Harmonizing genetic ancestry and self-identified race/ethnicity in genome-wide association studies. Am J Hum Genet. 2019;105:763–72.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  78. Weiss GJ, Byron SA, Aldrich J, et al. A prospective pilot study of genome-wide exome and transcriptome profiling in patients with small cell lung cancer progressing after first-line therapy. PLoS One. 2017;12:e0179170.

    Article  PubMed Central  PubMed  Google Scholar 

  79. Palmer JR, Ambrosone CB, Olshan AF. A collaborative study of the etiology of breast cancer subtypes in African American women: the AMBER consortium. Cancer Causes Control. 2014;25:309–19.

    Article  PubMed  Google Scholar 

  80. Nichols HB, Graff M, Bensen JT, et al. Genetic variants in anti-Mullerian hormone-related genes and breast cancer risk: results from the AMBER consortium. Breast Cancer Res Treat. 2021;185:469–78.

    Article  CAS  PubMed  Google Scholar 

  81. Chen Y, Sadasivan SM, She R, et al. Breast and prostate cancers harbor common somatic copy number alterations that consistently differ by race and are associated with survival. BMC Med Genet. 2020;13:116. https://doi.org/10.1186/s12920-020-00765-2. PMID: 32819446; PMCID: PMC7441621.

  82. Martini R, Chen Y, Jenkins BD, et al. Investigation of triple-negative breast cancer risk alleles in an International African-enriched cohort. Sci Rep. 2021;11:9247.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  83. Newman LA, Jenkins B, Chen Y, et al. Hereditary susceptibility for triple negative breast cancer associated with Western Sub-Saharan African ancestry: results from an international surgical breast cancer collaborative. Ann Surg. 2019;270:484–92.

    Article  PubMed  Google Scholar 

  84. Jiagge E, Jibril AS, Davis M, et al. Androgen receptor and ALDH1 expression among internationally diverse patient populations. J Glob Oncol. 2018;4:1–8.

    PubMed  Google Scholar 

  85. Freedman JA, Al Abo M, Allen TA, et al. Biological aspects of cancer health disparities. Annu Rev Med. 2021;72:229–41.

    Article  CAS  PubMed  Google Scholar 

  86. Halbert CH, Allen CG, Jefferson M, et al. Lessons learned from the Medical University of South Carolina Transdisciplinary Collaborative Center (TCC) in precision medicine and minority men’s health. Am J Mens Health. 2020;14:1557988320979236.

    Article  PubMed Central  PubMed  Google Scholar 

  87. Mancilla VJ, Peeri NC, Silzer T, et al. Understanding the interplay between health disparities and epigenomics. Front Genet. 2020;11:903.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  88. Shim JK, Ackerman SL, Darling KW, et al. Race and ancestry in the age of inclusion: technique and meaning in post-genomic science. J Health Soc Behav. 2014;55:504–18.

    Article  PubMed Central  PubMed  Google Scholar 

  89. Colditz GA, Wei EK. Preventability of cancer: the relative contributions of biologic and social and physical environmental determinants of cancer mortality. Annu Rev Public Health. 2012;33:137–56.

    Article  PubMed Central  PubMed  Google Scholar 

  90. Gehlert S, Colditz GA. Cancer disparities: unmet challenges in the elimination of disparities. Cancer Epidemiol Biomark Prev. 2011;20:1809–14.

    Article  Google Scholar 

  91. Cassel KD. Using the Social-Ecological Model as a research and intervention framework to understand and mitigate obesogenic factors in Samoan populations. Ethn Health. 2010;15:397–416.

    Article  PubMed  Google Scholar 

  92. Davis MB, Newman LA. Breast cancer disparities: how can we leverage genomics to improve outcomes? Surg Oncol Clin N Am. 2018;27:217–34.

    Article  PubMed  Google Scholar 

  93. Singla N, Singla S. Harnessing big data with machine learning in precision oncology. Kidney Cancer J. 2020;18:83–4.

    PubMed Central  PubMed  Google Scholar 

  94. Crichton DJ, Altinok A, Amos CI, et al. Cancer biomarkers and big data: a planetary science approach. Cancer Cell. 2020;38:757–60.

    Article  CAS  PubMed  Google Scholar 

  95. Jourquin J, Reffey SB, Jernigan C, et al. Susan G. Komen big data for breast cancer initiative: how patient advocacy organizations can facilitate using big data to improve patient outcomes. JCO Precis Oncol. 2019;3:1.

    Google Scholar 

  96. Cammarota G, Ianiro G, Ahern A, et al. Gut microbiome, big data and machine learning to promote precision medicine for cancer. Nat Rev Gastroenterol Hepatol. 2020;17:635–48.

    Article  PubMed  Google Scholar 

  97. Pastorino R, De Vito C, Migliara G, et al. Benefits and challenges of Big Data in healthcare: an overview of the European initiatives. Eur J Pub Health. 2019;29:23–7.

    Article  Google Scholar 

  98. Jiang P, Sellers WR, Liu XS. Big data approaches for modeling response and resistance to cancer drugs. Annu Rev Biomed Data Sci. 2018;1:1–27.

    Article  PubMed Central  PubMed  Google Scholar 

  99. Ow GS, Kuznetsov VA. Big genomics and clinical data analytics strategies for precision cancer prognosis. Sci Rep. 2016;6:36493.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  100. Klann JG, Estiri H, Weber GM, et al. Validation of an internationally derived patient severity phenotype to support COVID-19 analytics from electronic health record data. J Am Med Inform Assoc. 2021;28:1411–20.

    Article  PubMed  Google Scholar 

  101. Salvatore M, Gu T, Mack JA, et al. A phenome-wide association study (PheWAS) of COVID-19 outcomes by race using the electronic health records data in Michigan medicine. J Clin Med. 2021;10:1351.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  102. Guo Y, Zhang Y, Lyu T, et al. The application of artificial intelligence and data integration in COVID-19 studies: a scoping review. J Am Med Inform Assoc. 2021;28:2050–67.

    Article  PubMed Central  PubMed  Google Scholar 

  103. Mysona DP, Kapp DS, Rohatgi A, et al. Applying artificial intelligence to gynecologic oncology: a review. Obstet Gynecol Surv. 2021;76:292–301.

    Article  PubMed  Google Scholar 

  104. Su TH, Wu CH, Kao JH. Artificial intelligence in precision medicine in hepatology. J Gastroenterol Hepatol. 2021;36:569–80.

    Article  PubMed  Google Scholar 

  105. Benissan-Messan DZ, Merritt RE, Bazan JG, et al. National utilization of surgery and outcomes for primary tracheal cancer in the United States. Ann Thorac Surg. 2020;110:1012–22.

    Article  PubMed Central  PubMed  Google Scholar 

  106. Breen N, Berrigan D, Jackson JS, et al. Translational health disparities research in a data-rich world. Health Equity. 2019;3:588–600.

    Article  PubMed Central  PubMed  Google Scholar 

  107. Chino F, Suneja G, Moss H, et al. Health care disparities in cancer patients receiving radiation: changes in insurance status after medicaid expansion under the affordable care act. Int J Radiat Oncol Biol Phys. 2018;101:9–20.

    Article  PubMed  Google Scholar 

  108. Karalexi MA, Baka M, Ryzhov A, et al. Survival trends in childhood chronic myeloid leukaemia in southern-Eastern Europe and The United States of America. Eur J Cancer. 2016;67:183–90.

    Article  PubMed  Google Scholar 

  109. Ramirez AG, Thompson IM. How will the ‘cancer moonshot’ impact health disparities? Cancer Causes Control. 2017;28:907–12.

    Article  PubMed  Google Scholar 

  110. Panel’s “moonshot” goals released. Cancer Discov. 2016;6:1202–3.

    Google Scholar 

  111. Oh A, Vinson CA, Chambers DA. Future directions for implementation science at the National Cancer Institute: implementation science centers in cancer control. Transl Behav Med. 2021;11:669–75.

    Article  PubMed  Google Scholar 

  112. Jaffee EM, Dang CV, Agus DB, et al. Future cancer research priorities in the USA: a Lancet Oncology Commission. Lancet Oncol. 2017;18:e653–706.

    Article  PubMed Central  PubMed  Google Scholar 

  113. Stevens KR, Masters KS, Imoukhuede PI, et al. Fund black scientists. Cell. 2021;184:561–5.

    Article  CAS  PubMed  Google Scholar 

  114. Kaiser J. Biomedical research funding. NIH uncovers racial disparity in grant awards. Science. 2011;333:925–6.

    Article  CAS  PubMed  Google Scholar 

  115. Ginther DK, Schaffer WT, Schnell J, et al. Race, ethnicity, and NIH research awards. Science. 2011;333:1015–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  116. Woods-Burnham L, Basu A, Cajigas-Du Ross CK, et al. The 22Rv1 prostate cancer cell line carries mixed genetic ancestry: implications for prostate cancer health disparities research using pre-clinical models. Prostate. 2017;77:1601–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  117. Myers JS, Vallega KA, White J, et al. Proteomic characterization of paired non-malignant and malignant African-American prostate epithelial cell lines distinguishes them by structural proteins. BMC Cancer. 2017;17:480.

    Article  PubMed Central  PubMed  Google Scholar 

  118. Yates C, Long MD, Campbell MJ, et al. miRNAs as drivers of TMPRSS2-ERG negative prostate tumors in African American men. Front Biosci (Landmark Ed). 2017;22:212–29.

    Article  CAS  PubMed  Google Scholar 

  119. Sanchez TW, Zhang G, Li J, et al. Immunoseroproteomic profiling in African American men with prostate cancer: evidence for an autoantibody response to glycolysis and plasminogen-associated proteins. Mol Cell Proteomics. 2016;15:3564–80.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  120. Jones J, Mukherjee A, Karanam B, et al. African Americans with pancreatic ductal adenocarcinoma exhibit gender differences in Kaiso expression. Cancer Lett. 2016;380:513–22.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  121. Reams RR, Agrawal D, Davis MB, et al. Microarray comparison of prostate tumor gene expression in African-American and Caucasian American males: a pilot project study. Infect Agent Cancer. 2009;4(Suppl 1):S3.

    Article  PubMed Central  PubMed  Google Scholar 

  122. Davis M, Tripathi S, Hughley R, et al. AR negative triple negative or “quadruple negative” breast cancers in African American women have an enriched basal and immune signature. PLoS One. 2018;13:e0196909.

    Article  PubMed Central  PubMed  Google Scholar 

  123. Theodore SC, Davis M, Zhao F, et al. MicroRNA profiling of novel African American and Caucasian Prostate Cancer cell lines reveals a reciprocal regulatory relationship of miR-152 and DNA methyltranferase 1. Oncotarget. 2014;5:3512–25.

    Article  PubMed Central  PubMed  Google Scholar 

  124. Lee CP, Irwanto A, Salim A, et al. Breast cancer risk assessment using genetic variants and risk factors in a Singapore Chinese population. Breast Cancer Res. 2014;16:R64.

    Article  PubMed Central  PubMed  Google Scholar 

  125. Conti DV, Darst BF, Moss LC, et al. Trans-ancestry genome-wide association meta-analysis of prostate cancer identifies new susceptibility loci and informs genetic risk prediction. Nat Genet. 2021;53:65–75.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  126. Robbins C, Torres JB, Hooker S, et al. Confirmation study of prostate cancer risk variants at 8q24 in African Americans identifies a novel risk locus. Genome Res. 2007;17:1717–22.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  127. Freedman ML, Haiman CA, Patterson N, et al. Admixture mapping identifies 8q24 as a prostate cancer risk locus in African-American men. Proc Natl Acad Sci U S A. 2006;103:14068–73.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  128. Li Y, Li Y, Yang T, et al. Clinical significance of EML4-ALK fusion gene and association with EGFR and KRAS gene mutations in 208 Chinese patients with non-small cell lung cancer. PLoS One. 2013;8:e52093.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  129. Bai H, Mao L, Wang HS, et al. Epidermal growth factor receptor mutations in plasma DNA samples predict tumor response in Chinese patients with stages IIIB to IV non-small-cell lung cancer. J Clin Oncol. 2009;27:2653–9.

    Article  CAS  PubMed  Google Scholar 

  130. Guerrero-Preston R, Lawson F, Rodriguez-Torres S, et al. JAK3 variant, immune signatures, DNA methylation, and social determinants linked to survival racial disparities in head and neck cancer patients. Cancer Prev Res (Phila). 2019;12:255–70.

    Article  CAS  PubMed  Google Scholar 

  131. Maxwell GL, Allard J, Gadisetti CV, et al. Transcript expression in endometrial cancers from Black and White patients. Gynecol Oncol. 2013;130:169–73.

    Article  CAS  PubMed  Google Scholar 

  132. Krishnan B, Rose TL, Kardos J, et al. Intrinsic genomic differences between African American and White patients with clear cell renal cell carcinoma. JAMA Oncol. 2016;2:664–7.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melissa B. Davis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Davis, M.B., Ford, M., Martini, R., Newman, L.A. (2023). Translational Efforts in Precision Medicine to Address Disparities. In: Hughes Halbert, PhD, C. (eds) Cancer Health Disparities. Springer, Cham. https://doi.org/10.1007/978-3-031-37638-2_4

Download citation

Publish with us

Policies and ethics