Skip to main content

Basic Science Research in Cancer Health Disparities

  • Chapter
  • First Online:
Cancer Health Disparities

Abstract

An important objective for basic science research in cancer health disparities is it identifies and understands biological mechanisms that contribute to the initiation and progress of cancer and influence how individuals respond to treatment. Several disciplines (e.g., physiology, microbiology, pharmacology, genetics) contribute to basic science research in cancer health disparities; increasingly, these studies are focused on understanding the ways in which biological mechanisms and pathways are shaped by environmental, behavioral, and social factors. Advances in the technologies that are available to examine biological mechanisms in cancer health disparities are also moving the field forward. However, these current methods and practices are based on several seminal events and ongoing challenges that include early efforts to establish cell lines to understand cancer biology and the limited representation of disparity populations in the commercially available resources that are used to support basic science studies. This chapter provides an overview of key historical events that established the foundation for basic science research in cancer health disparities and describes ongoing efforts to develop and apply new methods and technologies to understand biological mechanisms in disparity populations. Future priorities for basic science research are also identified in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. https://www.cancer.gov/about-cancer/understanding/disparities.

  2. Sharma SV, Haber DA, Settleman J. Cell line-based platforms to evaluate the therapeutic efficacy of candidate anticancer agents. Nat Rev Cancer. 2010;10(4):241–53.

    Article  CAS  PubMed  Google Scholar 

  3. Masters J. HeLa cells 50 years on: the good, the bad and the ugly. Nat Rev Cancer. 2002;2:315–9.

    Article  CAS  PubMed  Google Scholar 

  4. Neve RM, Chin K, Fridlyand J, Yeh J, Baehner FL, Fevr T, Clark L, Bayani N, Coppe JP, Tong F, et al. A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell. 2006;10:515–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Scherer WF, Syverton JT, Gey GO. Studies on the propagation in vitro of poliomyelitis viruses. J Exp Med. 1953;97:695–709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hsiang YH, Hertzberg R, Hecht S, Liu LF. Camptothecin induces protein-linked DNA breaks via mammalian DNA topoisomerase I. J Biol Chem. 1985;260(27):14873–8.

    Article  CAS  PubMed  Google Scholar 

  7. National Institutes of Health. Significant research advances enabled by HeLa cells. Available at: https://osp.od.nih.gov/scientific-sharing/hela-cells-timeline.

  8. American type culture collection. Available at: https://www.atcc.org/.

  9. Hooker SE Jr, Woods-Burnham L, Bathina M, Lloyd S, Gorjala P, Mitra R, Nonn L, Kimbro KS, Kittles RA. Genetic ancestry analysis reveals misclassification of commonly used cancer cell lines. Cancer Epidemiol Biomark Prev. 2019;28(6):1003–9.

    Article  CAS  Google Scholar 

  10. Badal S, Campbell KS, Valentine H, Ragin C. The need for cell lines from diverse ethnic backgrounds for prostate cancer research. Nat Rev Urol. 2019;16(12):691–2.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Seijo E, Lima D, Iriabho E, Almeida J, Monico J, Echeverri M, Gutierrez S, Flores I, Lee JH, Fisher K, Grizzle WE, Sica GL, Butler C, Hicks C, Meade CD, Sodeke SO, Moroz K, Coppola D, Munoz-Antonia T. Construction and validation of a multi-institutional tissue microarray of invasive ductal carcinoma from racially and ethnically diverse populations. Cancer Control. 2016;23(4):383–9.

    Article  PubMed  Google Scholar 

  12. Jawhar NM. Tissue microarray: a rapidly evolving diagnostic and research tool. Ann Saudi Med. 2009;29(2):123–7.

    Article  PubMed  PubMed Central  Google Scholar 

  13. National Cancer Institute. NCI dictionaries. Available at: https://www.cancer.gov/publications/dictionaries/cancer-terms/def/patient-derived-xenograft.

  14. Kerbel RS. Human tumor xenografts as predictive preclinical models for anticancer drug activity in humans: better than commonly perceived-but they can be improved. Cancer Biol Ther. 2003;2:S134–9.

    Article  CAS  PubMed  Google Scholar 

  15. Guerrero S, López-Cortés A, Indacochea A, et al. Analysis of racial/ethnic representation in select basic and applied cancer research studies. Sci Rep. 2018;8:13978.

    Article  PubMed  PubMed Central  Google Scholar 

  16. University of California-Davis. University of California Minority Patient-Derived Xenograft Development and Trial Center (UCaMP) to reduce cancer health disparities. Available at: https://www.pdxnetwork.org/new-page.

  17. McDonald JA, Vadaparampil S, Bowen D, Magwood G, Obeid JS, Jefferson M, Drake R, Gebregziabher M, Hughes HC. Intentions to donate to a biobank in a national sample of African Americans. Public Health Genomics. 2014;17(3):173–82.

    Article  PubMed  Google Scholar 

  18. McDonald JA, Weathers B, Barg FK, Troxel AB, Shea JA, Bowen D, Guerra CE, Halbert CH. Donation intentions for cancer genetics research among African Americans. Genet Test Mol Biomarkers. 2012;16(4):252–8.

    Article  PubMed  PubMed Central  Google Scholar 

  19. McDonald JA, Barg FK, Weathers B, Guerra CE, Troxel AB, Domchek S, Bowen D, Shea JA, Halbert CH. Understanding participation by African Americans in cancer genetics research. J Natl Med Assoc. 2012;104(7–8):324–30.

    PubMed  Google Scholar 

  20. Pickersgill M, Niewohner J, Muller R, Martin P, Cunningham-Burley S. Mapping the new molecular landscape: social dimensions of epigenetics. New Genet Soc. 2013;32:429–47.

    Article  PubMed  PubMed Central  Google Scholar 

  21. National Cancer Institute. Epigenomics and epigenetics research. Washington, DC: National Cancer Institute; 2018.

    Google Scholar 

  22. Aranda-Anzaldo A, Dent MAR. Landscaping the epigenetic landscape of cancer. Prog Biophys Mol Biol. 2018;140:155–74.

    Article  CAS  PubMed  Google Scholar 

  23. Mohammed SI, Springfield S, Das R. Role of epigenetics in cancer health disparities. Methods Mol Biol. 2012;863:395–410.

    Article  CAS  PubMed  Google Scholar 

  24. Yehuda R, Daskalakis NP, Desarnaud F, et al. Epigenetic biomarkers as predictors and correlates of symptom improvement following psychotherapy in combat veterans with PTSD. Front Psych. 2013;4:118.

    Google Scholar 

  25. Radley JJ, Kabbaj M, Jacobson L, Heydendael W, Yehuda R, Herman JP. Stress risk factors and stress-related pathology: neuroplasticity, epigenetics and endophenotypes. Stress. 2011;14:481–97.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Ehrlich M, Lacey M. DNA methylation and differentiation: silencing, upregulation and modulation of gene expression. Epigenomics. 2013;5:553–68.

    Article  CAS  PubMed  Google Scholar 

  27. Pfeifer GP. Defining driver DNA methylation changes in human cancer. Int J Mol Sci. 2018;19

    Google Scholar 

  28. Costello JF, Fruhwald MC, Smiraglia DJ, et al. Aberrant CpG-Island methylation has non-random and tumour-type-specific patterns. Nat Genet. 2000;24:132–8.

    Article  CAS  PubMed  Google Scholar 

  29. Esteller M, Corn PG, Baylin SB, Herman JG. A gene hypermethylation profile of human cancer. Cancer Res. 2001;61:3225–9.

    CAS  PubMed  Google Scholar 

  30. Figueiredo JC, Grau MV, Wallace K, et al. Global DNA hypomethylation (LINE-1) in the normal colon and lifestyle characteristics and dietary and genetic factors. Cancer Epidemiol Biomark Prev. 2009;18:1041–9.

    Article  CAS  Google Scholar 

  31. Terry MB, Ferris JS, Pilsner R, et al. Genomic DNA methylation among women in a multiethnic New York City birth cohort. Cancer Epidemiol Biomark Prev. 2008;17:2306–10.

    Article  CAS  Google Scholar 

  32. Hulbert A, Jusue-Torres I, Stark A, et al. Early detection of lung cancer using DNA promoter hypermethylation in plasma and sputum. Clin Cancer Res. 2017;23:1998–2005.

    Article  CAS  PubMed  Google Scholar 

  33. Wrangle J, Machida EO, Danilova L, et al. Functional identification of cancer-specific methylation of CDO1, HOXA9, and TAC1 for the diagnosis of lung cancer. Clin Cancer Res. 2014;20:1856–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Herman JG, Graff JR, Myohanen S, Nelkin BD, Baylin SB. Methylation-specific pcr: a novel pcr assay for methylation status of cpg islands. Proc Natl Acad Sci U S A. 1996;93(18):9821–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Belinsky SA, Nikula KJ, Palmisano WA, Michels R, Saccomanno G, Gabrielson E, Baylin SB, Herman JG. Aberrant methylation of p16(ink4a) is an early event in lung cancer and a potential biomarker for early diagnosis. Proc Natl Acad Sci U S A. 1998;95(20):11891–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Palmisano WA, Divine KK, Saccomanno G, Gilliland FD, Baylin SB, Herman JG, Belinsky SA. Predicting lung cancer by detecting aberrant promoter methylation in sputum. Cancer Res. 2000;60(21):5954–8.

    CAS  PubMed  Google Scholar 

  37. Herman JG, Baylin SB. Gene silencing in cancer in association with promoter hypermethylation. N Engl J Med. 2003;349(21):2042–54.

    Article  CAS  PubMed  Google Scholar 

  38. Belinsky SA. Gene-promoter hypermethylation as a biomarker in lung cancer. Nat Rev Cancer. 2004;4(9):707–17.

    Article  CAS  PubMed  Google Scholar 

  39. Paik WK, Kim S. Protein methylase I. Purification and properties of the enzyme. J Biol Chem. 1968;243(9):2108–14.

    Article  CAS  PubMed  Google Scholar 

  40. Lin WJ, Gary JD, Yang MC, Clarke S, Herschman HR. The mammalian immediate-early TIS21 protein and the leukemia-associated BTG1 protein interact with a protein-arginine n-methyltransferase. J Biol Chem. 1996;271(25):15034–44.

    Article  CAS  PubMed  Google Scholar 

  41. Kim JH, Yoo BC, Yang WS, Kim E, Hong S, Cho JY. The role of protein arginine methyltransferases in inflammatory responses. Mediat Inflamm. 2016;2016:4028353.

    Article  Google Scholar 

  42. Zhang H, Han C, Li T, Li N, Cao X. The methyltransferase prmt6 attenuates antiviral innate immunity by blocking TBK1-IRF3 signaling. Cell Mol Immunol. 2019;16(10):800–9.

    Article  CAS  PubMed  Google Scholar 

  43. Blanc RS, Richard S. Arginine methylation: the coming of age. Mol Cell. 2017;65(1):8–24.

    Article  CAS  PubMed  Google Scholar 

  44. Clegg LX, Reichman ME, Miller BA, Hankey BF, Singh GK, Lin YD, Goodman MT, Lynch CF, Schwartz SM, Chen VW, Bernstein L, Gomez SL, Graff JJ, Lin CC, Johnson NJ, Edwards BK. Impact of socioeconomic status on cancer incidence and stage at diagnosis: selected findings from the surveillance, epidemiology, and end results: national longitudinal mortality study. Cancer Causes Control. 2009;20(4):417–35.

    Article  PubMed  Google Scholar 

  45. Hayanga AJ, Zeliadt SB, Backhus LM. Residential segregation and lung cancer mortality in the United States. JAMA Surg. 2013;148(1):37–42.

    Article  PubMed  Google Scholar 

  46. Annesi CA, Poulson MR, Mak KS, Tapan U, Dechert TA, Litle VR, Suzuki K. The impact of residential racial segregation on non-small cell lung cancer treatment and outcomes. Ann Thorac Surg. 2022;113(4):1291–8.

    Article  PubMed  Google Scholar 

  47. Vidrine JI, Reitzel LR, Wetter DW. The role of tobacco in cancer health disparities. Curr Oncol Rep. 2009;11:475.

    Article  PubMed Central  Google Scholar 

  48. American Lung Association. State of lung cancer. Available at: https://www.lung.org/research/state-of-lung-cancer

  49. Vyas DA, Eisenstein LG, Jones DS. Hidden in plain sight – reconsidering the use of race correction in clinical algorithms. N Engl J Med. 2020;383(9):874–82.

    Article  PubMed  Google Scholar 

  50. National Institutes of Health. Physician-scientist workforce working group report. Bethesda, MD: National Institutes of Health; 2014. Available at: https://report.nih.gov/workforce/psw/index.aspx.

    Google Scholar 

  51. Mervis J. NIH hopes ‘cluster hiring’ will improve diversity. Science. 6479;367. Available at: https://www.sciencemag.org/news/2020/01/nih-s-new-cluster-hiring-program-aims-help-schools-attract-diverse-faculty.

  52. Clark LT, Watkins L, Piña IL, Elmer M, Akinboboye O, Gorham M, Jamerson B, McCullough C, Pierre C, Polis AB, Puckrein G, Regnante JM. Increasing diversity in clinical trials: overcoming critical barriers. Curr Probl Cardiol. 2019;44(5):148–72.

    Article  PubMed  Google Scholar 

  53. Scharff DP, Mathews KJ, Jackson P, Hoffsuemmer J, Martin E, Edwards D. More than Tuskegee: understanding mistrust about research participation. J Health Care Poor Underserved. 2010;21(3):879–97.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Halbert CH, McDonald J, Vadaparampil S, Rice L, Jefferson M. Conducting precision medicine research with African Americans. PLoS One. 2016;11(7):e0154850.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert A. Winn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Obi, T., Winn, R.A. (2023). Basic Science Research in Cancer Health Disparities. In: Hughes Halbert, PhD, C. (eds) Cancer Health Disparities. Springer, Cham. https://doi.org/10.1007/978-3-031-37638-2_2

Download citation

Publish with us

Policies and ethics